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A Review of Adaptive Cluster and It’s Applications

Introduction

Precise and accurate estimates of a population total or population mean along with
the associated variance estimates are essential when drawing inference about a population.
Conventional sampling designs are most efficient when the population is evenly distributed
over the study area. Many populations, however, are rare, hidden, and/or hard to reach.
When conventional sampling designs such as simple random sampling are used on these
types of populations, standard errors are inflated. A new design-based method known as
adaptive cluster sampling (ACS) was introduced by Thompson in 1990 to improve estimation
for these types of populations. Applications of ACS are primarily ecological in which the
definition of neighbor is in terms of spatial adjacency; however, it can be applied to other
types of populations with rare characteristics such as people who use illicit drugs or who are
infected by HIV as long as there is an appropriate neighborhood definition. For this type
of population a social linkage would be used to adaptively sample such as social contact or
kinship.

In adaptive cluster sampling, the sampling is ”adapted” to the data. An initial sample
of size n; is taken from the population. When the observed vahue of an initially sampled unit
satisfies some condition of interest C, additional units in a pre-defined neighborhood are also
selected. This process is iterated until no units satisfying C are encountered. An example
of a pre-determined choice of C could be if at least 1 member of the population is observed
in the selected area. This type of sampling is designed to give the researcher a good idea of
the location of where a rare population resides and allow sampling in the vicinity to gather
as much accurate information about the population.

Terminology

For the rest of this paper, -1 will be talking about- Adaptive Cluster Sampling in terms
of spatial adjacency. Many low-abundance plants and animals oceur in clusters; therefore,
once a quadrat is found to have a member of the population of interest, quadrats in the
neighborhood of that occupied quagdrat are more likely to have additiopal members of that
population. A criterion for sampling subsequent quadrats could beamo?gt some threshold
number of members such as the presence of a single member of the population of interest,.
The only constraint is that the definition of neighbor must be transitive. This means if i
is a neighbor j, then j is also a neighbor of { and vice versa. In order for adaptive cluster
sampling to work more efficiently than simple random sampling, neighbors must have positive



covariation in the sampled attribute,

In spatial clustering, a neighborhood could be defined as 2, 4, or 8 adjacent quadrats., If
an initially sampled unit meets the criterion, then each surrounding quadrat defined in the
neighborhood is also sampled. This procedure results-with networks of sampled quadrats
until each network is surrounded by a ring of empty quadrats that do not satisfy condition
C..The final result consists of a sample with 3 different types of quadrats. The first type is
qﬁa;:irats sampled initially whether they satisfy C or not. The second type are referred to
as secondary units which are the quadrats sampled, not because they are part of the initia]
sample, but because they are in the recursive neighborhood of a, quadrat in the initial sample
that satisfied C. The third type is edge quadrats which are quadrats that do not satisfy C
and are not in the initial sample, but are neighbors of quadrats with members of either of
the first 2 types. A network is defined as a set of quadrats such that if any quadrat in the
network is sampléd, all quadrats in that particular network are sample;::lJ A network can be
an initially sampled quadrat satisfying C plus all neighboring quadrats that satisfy C, but
do not include the edge units. A network can also be of size 1 which occurs when an initially

sampled quadrat does not meet the criterion C.

Estimators

The sample mean 3 of the sampled quadrats is a biased estimate of the population mean
because more quadrats satisfying C were disproportionately included and quadrats within
larger networks have a increased probability-of being-added-tothe sample (Philippi 2005).
Estimators have been modified that are design-unbiased for the population mean along with
design-unbiased estimators of their variances. Additionally, the Rao-Blackwell method has
been used to obtain smaller variance design-unbiased estimators for ACS.

The following description and formulas for the ACS estimators are taken from Thomp-
son (1990). The Horvitz-Thompson and Hansen-Hurwitz estimators are the two types of
estimators used in adaptive cluster sampling. In order to apply the Horvitz-Thompson esti-
mator, the inclusion probabilities m; must be known for each sampled quadrat. This is why
it is necessary the neighborhood definition is pre-defined and transitive. Quadrats may be
included via more than one process either in the initia] sample, or an edge quadrat adjacent
to a network with at least one quadrat in the initial sample.



Suppose an initial sample n is taken via SRSWOR. Because of the multiple ways for a
quadrat to be included in the sample, the probability of its inclusion is 1 minus the fraction
of possible sample draws that would not have included that quadrat,.

mi=1 (N""Ei)_bi)

In the formula above, m; is the probability a quadrat is selected, n is the number of
quadrats in the initial sample, m; is the mumber of quadrats in the network that includes
quadrat i, b; is the number of quadrats in networks for which quadrat i is an edge. N and n
are known initially and m; can be tallied for each sampled quadrat as long as the sampling
continues until the entire network is sampled. If the sampling procedure does not detect
the existence of a cluster, potential edge units will not be sampled and so &; can not be
determined because the sampling design does not provide enough information to caleulate
the probability of each quadrat ineluded in the sample. The solution to this defect is to ex-
clude edge quadrats from the estimation (Thompson 1990). This aliows for the calculation
of the probability of quadrat i’s inclusion in the sample using the information obtained in
the sampling,

The probability of inclusion is equal for all quadrats in a network; therefore, the proh-
ability of inclusion for network a; can be calculated.

N—x
ap=1— ( (,':,)k) T 18 the number of quadrats found in network k

"
"The Horvitz-Thompson estimator for this adaptive design is Bar = 7{,— Z %‘1 where ¥, is the

k=1
number of individuals found in the entire network .

To estimate the variance of the Horvitz-Thompson estimator, the probabilities that both
network j and network k are included in the sample are needed.
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If the initial sample is chosen with replacement, then the inclusion probabilities would change:

xT
a=1-(1~2)

o =1-[(1- %)“ + (1 — %)"- —(1— —____(m”;;‘“"))ﬂ]

The summations for both fiyr and the estimated variance of fiyr are taken over the
unique networks v (< n) observed in the sample. A given network may be intersected
by more than one quadrat in the initial sample. For the H-T estimators, that network is
only included once. Essentially, the estimators are based on the probabilities of inclusion or

intersection of each sampled network.

A second unbiased estimator is based on the Hansen-Hurwitz estimator used in ACS,
This estimator is based on the number of times each network is intersected.

R 1 ¢
BHu = 5;101‘
i=

L N-—n n _
Var(jigy) = Na(n= 1) > (wi — fuar)?
i=1

where w; is the mean quadrat abundance for quadrats in cluster i. In general,

Var(pur) < 175':';”(.&HH)

Improvement of the Estimators Through
the Rao-Blackwell Method

Thompson (1990} discusses the improvement of the estimators used in ACS through
the Rao-Blackwell Method which is unique in that it utilizes edge units cven if they are not
selected in the initial sample. None of the estimators discussed earlier is a funetion- of the
minimal sufficient statistic which means each can be improved by using the Rao-Blackwell
method of taking their conditional expectations given the minimal sufficient statistic.

The three unbiased estimators Y1, tun, and tyr depend on the order of selection. In
addition, t; 5 depends on repeat selections; and if the initial sample is selected with replace-
ment, ; also depends on repeat selections. Define t as any of the three unbiased estimators
mentioned earlier and consider the estimstor tre=E(t|D) where D is the minimal sufficient
statistic that is the unordered set of distinct, labeled observations in the finite population.
D={(k, yx): & € s} where s denotes the set of distinct units included in the sample. Define v



as the effective sample which is the number of units in the final sample. There are G = (r:"l)
combinations of the initial sample when units are selected without replacement in a simple
random sample. Let ¢, be the value of the estimator t obtained when the initial sample
consists of combination g. Similarly, 7a7(t,) is the value of the variance estimator obtained
with initial sample g.

Define &* as the number of distinct networks represented in the sample excluding the
sample edge units. An initial sample of n; units gives rise to the given value of D iff the
initial sample contains at least one unit from each k* unique networks minus the sample
edge units. Any initial sample that gives rise through the design to the given value D of the
minimal sufficient statistic is compatible with D. If z; is the number of units in the initial
sample from the jth network, then an initial sample of n; units from the v distinct units
in D is compatible with D iff z; > 1 for j=1,....k*. The indicator variable I, is 1 if the gth

combination of n; units from the sample is compatible with D and 0 otherwise; thus, the
G

total number of compatible combinations is (= Z I,
g=1

G
The Rao-Blackwell estimator ¢z5 = ¢ 1 Z tgl, and
a=1

G
ai(tas) = (71 ) [0ai(ty) — (ty — trs)?l,.
g=1

The variance estimate is unbiased; however, it can result in negative values with certain
sets of data. Overall, the Rao-Blackwell method is a recent and useful development in ACS
in terms of obtaining smaller variance design-unbiased estimators. On the other hand, the
method requires further research in the calculations of Rao-Blackwell estimators because the

numbers of terms in the preceding expressions are potentially large.

An Example

In the 10 x 10 grid below, a hypothetical population of 100 members is distributed over
100 quadrats. To estimate the true population total, an initial simple random sample of 15
quadrats without replacement is implemented in which the quadrat with 2 members of the
population, the quadrat with 9 members of the population, and 13 quadrats without mem-
bers of the population are selected. If the criterion C is pre-set to 1 member of the population
and the neighborhood is defined as the 4 surrounding quadrats, then the adaptive sample
consists of 13 networks of size 0, one of size 21, and the other of size 57. The Y values, sum
of Y values, and size of each network are given in Table 1 and the Horvitz-Thompson and
Hansen-Hurwitz estimates are given in Table 2. The R-code used to calculate these estimates



can be found in the Appendix. The Horvitz-Thompson estimate of the true population total
of 107 is more accurate than the Hansen-Hurwitz estimate of 64; however, in this example,
the standard error of the Horvitz-Thompson total estimate of 37 is larger than the standard
error of the Hansen-Hurwitz total estimate of 16.
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Table 1
| Y Values Sum of Y Values | Network Size
3, 2,10, 6 21 4
1,4,4,12,6,9,3,7,3,1, 1, 3, 3 57 13
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1
¢ )] 1
0 0 1
0 1] i
0 0 1
0 0 1
Table 2
Parameter Horvitz-Thompson Hansen—HurwiE'
Total 107. 64
SE of estimated total 37 16
Approximate 95% CI for total (34,180) (33,96)
Mean 1.07 0.64
SE of estimated mean 0.37 0.16




Comparisons Between Classical Designs and ACS Designs

The objective of both classical and ACS designs is to select a sample of units, observe
the corresponding y-values, and then estimate some function z(y) (e.g., the population total
z(y) = ZfL Y% = 7, the population mean z(y) = & 2:11 = i+, or the population variance
2(y) = TN (y—‘N__“l—}Q = 0?%). With classical designs, the entire selection of sample units is
made prior to observing the y; values; whereas, in ACS, the selection of y; values is adaptive

such that the sample depends on the observed y: values (Turk & Borkowski 2005).

Aduvantages _

ACS has many advantages over classical designs. ACS can be more efficient such that
the variances of estimators will be smaller given an equivalent sampling effort. The locations
and shape of clusters of individuals are oftentimes not known prior to sampling; thus, ACS
can be implemented where stratification may not be possible (Thompson, 1991b). ACS is de-
signed to effectively detect areas of high abundance which increases the information provided
by the sample. This is particularly useful in gathering as much information as possible about
individuals in populations that are rare and hard to detect (Seber & Thompson 1994). ACS
is flexible in that the researcher determines the initial sample size, the sampling condition C,
the unit size, and the definition of the neighborhood. Subsequently, there exists a multitude
of methods for choosing the initial sample size (simple random sampling with replacement
(SRSWR), simple random sampling without replacement (SRSWOR), strip sampling (ex-
ample in A Simulation Study), systematic sampling, stratified sampling, sampling using
probabilities proportional to size, and simple Latin square sampling. Two other advantages
in terms of cost are the average distances between sampled units are smaller and the quadrat
locations are easier to find (Salehi & Seber, 1997; Brown & Manly, 1998).

Disadvantages

Because ACS is adaptive, the final sample size is random which makes it difficult to
determine and control the sampling effort as well as the cost of the survey in advance.
Researchers have proposed methods to deal with these issues which will be discussed in
Methods to Ease the Problem of a Random Final Sample Size. The flexibility of ACS in
terms of the selection of C, the initial sample size, the unit size, and the neighborhood
definition can also be a disadvantage because it makes finding variance-optimal designs
complicated and are, at the same time, critical to the efficiency of the ACS design. Brown
(2003) discusses how these factors should be determined in order to get a more efficient
ACS sampling design which is detailed later in Designing en Efficient Adaptive Cluster
Sample. Another difference in ACS relative to classical designs is that not all information



from sampled units is used in ACS. In particular, edge units are only used if they are part
of the initial sample. The development of Rao-Blackwell estimators addresses this concern

by incorporating information from edge units.

Increase in Efficiency of ACS

Thompson (1997) gives the following characteristics that tend to increase the efficiency of
adaptive cluster sampling relative to conventional random sampling: (1) the within-network
variance makes up a large proportion of the total population variance (i.e., the population
is highly aggregated with large variability within those aggregations) (2) The population is
rare (3} The expected final sample-size is not much larger than the initial sample size (4)
The cost of observing units in networks is not more than the cost of observing the same
number in a random sample (5) The cost of observing units not satisfying the criterion ¢
is less than the cost of observing units satisfying the criterion (6) The condition for extra
sampling may be based on an auxiliary variable that is easy to measure {7) A Rao-Blackwell
estimator or other efficient estimator is used with ACS.

A Simulation Study

Relative efficiency %"{—%, is the raftio of the sample variance of the estimated density
from simple random sampling and the sample variance of the estimated density from adaptive
cluster sampling; thus, the higher the relative efficiency, the more efficient ACS is compared
to the classical design._Conners_and Schwager (2002) evaluate the relative efficiency of ACS
and traditional sampling designs in a hydroacoustic survey setting. They use simulations to
show that high relative efficiency of ACS is associated with distributions that are strongly
skewed, have high kurtosis, and have a large proportion of units with zero over very low
densities. The researchers nse data from a hydroacoustic survey of rainbow smelt from the
eastern basin of Lake Erie. The Lake Erie Fisheries unit would like to optimize a survey
design for estimating the total stock size of smelt, with an accurate estimate of the associated
-variance. In order to-test the efficiency of ACS, a simulation study is conducted using fish
stocks similar to Lake Erie smelt. The simulated test stocks are created with known true total
size and different levels of spatial aggregation. Selected stocks are then sampled repeatedly
using both traditional and ACS designs.

The selected models consist, of stocks with no local correlation ( “Random”), with strong
local correlation over a large range (“Big Patches”), and with strong local correlation over
a small range (“Small Patches). The fourth stock {“Rare Patches”) represents strong local
correlation with relatively high background noise which is most similar to the Lake Erie

smelt data.



Sampling and estimation for the traditional designs use one-stage cluster sampling for-
mulas. Traditional designs include random selection of 10 transects, systematic selection of
10 transects with a random start and three stratified, random sampling designs in which
equal allocation of transects to strata is used. Results are found to be similar for the 3 types
of stratification so only one of the stratum designs is presented.

The ACS sampling uses the transects as primary units and the individual grid cells as
secondary units. A “neighborhood” definition of 4 adjacent cells is used and the eritical value
defining networks is set at the 80th percentile for the true distribution of the grid points.
Initial sample sizes for the ACS designs are selected to give expected final sample sizes (total
number of secondary units sampled) as close to the fixed size for the traditional designs.
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"The results of the simulation show that fixed-size cluster designs are more efficient than
SRS only when systematic and stratified cluster designs are applied to the stock with the
big patches. ACS proves to be more efficient than SRS when the target stock is rare or
highly aggregated or both. ACS is 3 times that of SRS, in terms of efficiency, for the “rare
patches” stock. ACS is not efficient for the “big patches” stock because the large final sample
size makes the equivalent SRS variance small. Overall, ACS estimators exhibit an unbiésed,
symmetric distribution with a consistently lower variance than traditional designs when the
population is spatially patchy or rare or both.

Final Sample Size
As mentioned before, one of the greatest limitations in the implementation of ACS is
the random nature of the final sample size and the possibility that the sample size will grow
too large to be feasible. The efficiency of ACS can be assessed by comparing the initial
sample size to the final sample size. For the stock with no spatial correlation, the average
final sample sizes are only 11-13% larger. None of the final sample sizes exceed 1.25 times
the initial sample size for this stock. For the “small” and “rare” stocks, the final sample



size using stratified random ACS is 1.7-2.1 times the initial sample size when starting from
a systematic sample. The stock with a few “big clusters” saw the greatest increase in final
sample size with the average final sample size being 2-4 times the size of the initial sample.
Because the “small” and “rare” stocks consistently have a lower variance through ACS than
the other populations and because the final sample size is between 1.7 and 2.1 times the
initial sample size which is “not too large”, ACS is most efficient for these populations. This
efficiency is discussed further in Designing an Efficient Adaptive Cluster Sample.

Methods to Ease the Problem of a Random Final-Sample Size
Restricted Adaptive Cluster Sampling

Brown and Many (1998) propose restricted adaptive cluster sampling as a method to
deal with the limitation of the random nature in the final sample size. In this modification,
a limit is placed on the final sample size prior to sampling resulting in less variation of
the final sample size and allowing sampling effort to be predicted with some certainty. In
restricted adaptive cluster sampling, if the cumulating total sample size is below a predefined
limit on the number of quadrats then another “initial” quadrat is selected. If the selected
quadrat and associated quadrats in the network result in a. cumulative sample size greater
than the predetermined final sample size, then the network is included, but then sampling
terminates. This results with a final sample size either equivalent to the predetermined value
or just slightly above it.

Stratification

Thompson and Seber (1996, p 134) offer another solution which involves stratifying the
study area prior to sampling and decisions regarding the continuation of the sampling effort is
determined after the completion of adaptive sampling of each stratum. Thompson and Seber
state that termination of a network at the stratum boundary is slightly less efficient than
using complete networks but the ACS estimators will still be design-unbiased for the stratum
totals. The stratum totals can be combined into an overall estimate assuming independence
of the strata. Essentially, this “partitioning of boundaries” limits the potential size of any
network which is one of the strategies used to control the final sample size (Conners 1322).

Inverse Adaptive Cluster Sampling

Christman and Lan (2001) discuss inverse adaptive cluster sampling as another way to
decrease excessively large final sample sizes. The method involves selecting initial sampling
units until some pre-specified number (k) of nonzero y-values are observed.
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Sampling is random (with or without replacement) and stops when 1 < &£ < M units are
sampled, k given. An alternative, unbiased estimator for the population total + under this

N{k—1),
a5 vhus,

stopping rule is 7y = M7 + (N — M)Gn—ps. Since M is rarely known, M =
71 = M + (N— M )¥n-nr. The estimated variance is given below,

Var(#r) = [ + (unr — pv-n)vary, (M) + B 4 52 B [%;‘-f}'%z]
Application of Inverse Adaptive Cluster Sampling
Inverse Adaptive Cluster Sampling is applied to Y={0, 0, 0, 0, 10, 40, 0, 0, 5, 20, 60,
0,0,0,0,0,0,0, 0, 0}. M=5 nonzero y-values, N=20, Population total 7=135, and C={y:
y > 0}. The adaptive neighborhood is defined as the units to the immediate left and right.
The initial random sample n,~=5 and k is set to 2.

Suppose ng = {y = 0,95 = 0,97 = 0,99 = 5,515 = 0}. One unit satisfies the adap-
tive sampling condition G in this case. It’s network means are {h = 0,73 = 0,5, =
0,95 = 28.33,715 = 0}. This sample does not satisfy the requirement k=2; therefore, an
additional unit is sampled, say y; = 0. This does not satisfy k=2 so a sample of one
unit is taken again, say 41; = 60. The stopping rule is now met and the final adaptive
sample is {§; = 0,7z = 0,7 = 0, Yo = 2833, s = 0,51 = 0,91 = 28.33}. The esti-
mate of M is M = Nkl _ —2%@ = 3.33; thus, the estimate of the population total is

ni1—1

My = 3.33(28.33) = 94.34.

A Simulation Study on Inverse Adaptive Cluster Sampling

In a simulation study, Christman and Lan (2001) demonstrate how a modified stopping
rule that incorporates an adaptive sampling component and utilizes an initial random sample
of fixed size is the best in term of minimizing variance. The sequential sampling strategies
are applied to 4 small (N=200) populations, 3 real and 1 artificial. The green-winged teal
and the blue-winged teal populations represent typical rare populations for which adaptive
cluster sampling is suited. There are few quadrats that contain nonzero y-values and the
within-network variance is high compared with the between network variance. The ring-
necked duck population contains a small number of quadrats with nonzero y-values, but the
within-network variance is small relative to the between-network variance. ACS will prove
to not be suitable for this population. The artificial population consists of quadrats with
low abundances; however, there are a large number of quadrats (29% of population) that
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have nonzero y-values. C= {y: y>0} for the simulation study which utilizes two stopping
rules: (1} sequentially sample with replacement until k units from Py are observed and (2)
take a fixed sample of size ny with replacement and, if at least k units from Py are not
observed, continue to sample until k units are observed. Both methods are sampled with
and without an adaptive component and the ‘sampling is done with replacement. Results
will be very similar to sampling without replacement except the sample sizes and variances
will be smaller.

25,000 Monte Carlo samples are taken from the above populations using the two stopping
rules for k=2, 3, 5, or 6 and for ny=10, 20, 35, and 50. Overall, the three estimators based
on ACS almost always have smaller variability than the 3 without the adaptive sampling
component and the best estimator for all populations and any choice of k is the unbiased esti-
mator based on inverse sampling 7;4. The estimators based on sequential adaptive clustering

have lower ——-—‘”"’fﬂ

than the nonadaptive samples as shown below in Figure 1. This decrease
is not because of higher sample sizes. There is only a slight increase in the final sample
sizes when a,daptively sampled for the rare, clustered green-winged teal and blue-winged teal
populations (Figure 2). This is not true for the artificial population at larger values of k
since adaptive cluster sampling is not appropriate for this higher density population. The
results show that the initial sample size is important in determining both the coefficient of
variation as well as the final sample size. The green-winged teal population is the most rare
(2.5% of units are in Py} so additional sampling will most likely occur. In contrast, 30%
of the artificial population are. members of Py so it is likely that nonzero networks will_be

sampled initially with reasonable probability.
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Designing an Efficient Adaptive Cluster Sample

Brown (2003) explains how to design an efficient adaptive cluster sample. She discusses
the importance in the choice of neighborhood and critical value in adaptive cluster sampling
and that the aim should be for a small difference between the initial and final sample size
along with a small difference between the within-network and population variances. These
two aims can work against each other; thus, the overall aim should be networks smali enough
to ensure the final sample size is not excessively large relative to the initial sample size, but
large enough to ensure within-network variance is a large proportion of the population vari-

ance.

Critical Value and Neighborhood Definition

The neighborhood definition and choice of critical value is important in designing an
efficient sampling design. If the critical value is too small, the final sample size will be
excessively large. If the critical value is too large, there will be no adaptive selection of units
because no units in the initial sample will meet the criterion C. The same can be said for
how neighborhood is defined. If the neighborhood is too large, the final sample size will
be excessively large. If it is too small, not enough units will be adaptively sampled. More
work still needs to be done in determining the choice of neighborhood and critical value.
Techniques such as running a pilot study or sampling in a n-stage manner are ways to get
around this. A pilot study involves surveying all the initial sampled units and based on the
observed y-values, the critical value C is set to, say, the top 10th percentile. A disadvantage
to this is that it could be costly to resample.

Brown’s study discusses how differing neighborhood definitions, initial sample sizes, and
critical values affect the efficiency of ACS. A Poisson cluster process is used to create 120
population-generating models in a 20 x 2 x 3 factorial design. The mean number of clusters,
A1, is B, 10, 15, up to 100; the mean number of individuals associated with each cluster is
10 or 20; and the mean distance of individuals from the cluster center is §— 0.5, 1.5, or 3.5
units. Fach model is used to simulate 200 populations while the variety of models is used to
cover a range of spatial patterns. In particular, 2 types of spatial patterns are used.

1. The same number of clusters, and individuals in a cluster, but with differences in
compactness of clusters are compared. Compactness of clusters is how close individuals
in a cluster are to each other.

2. Different numbers of individuals in a cluster along with a variety of clusters are com-
pared.
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Three neighborhood definitions are used for each simulated population: 8, 4, and 2
surrounding units and 2 critical values, 1 and 2. For each population, the variance o2
and the total T for the central N=400 units are calculated. Averages are taken over the
200 simulations for number of units that are network units, number of networks, average
network size, network variances, and final sample size for each population in each adaptive
cluster design.

Results indicate as the number of networks increase, relative efficiency decreases below
1 as shown in in the five figures below. Recall, relative efficiency is the ratio of the sample

variance of the estimated density from simple random sampling and the sample variance of
Var(§)
Var(g)
efficiency, the more efficient ACS is compared to the classical design. The number of networks

the estimated density from adaptive cluster sampling and so the higher the relative
or clusters depends on the underlying spatial pattern of the population and on the way the
sample is designed (i.e. neighborhood and critical value definition).

The plots given below display the results from Brown’s simulation study of how differing
neighborhood definitions, critical values, and initial sample sizes as well as cluster compact-
ness and size affect relative efficiency as a function of the true population total. Each plot
also shows how as number of networks increases (solid line), relative efficiency (dashed line)
decreases. The plot in Figure 2 below shows how the effect of neighborhood on relative
efficiency depends on the true population total, A larger neighborhood definition {nd4 and
nd8) results in a higher relative efficiency for true population totals below = 200; whereas, a
small neighborhood definition (nd2) results in a higher relative efficiency for true population
totals above ~ 200. Figure 3 shows how more compact clusters (#=1.5 vs 6=3.5) consistently
results in a higher relative efficiency as a function of the true population total. Similarly, in
Figure 4, relative efficiency is consistently higher for clusters with 20 individuals than with
10 individuals. Figure 5 is similar to Figure 2 in that the effect of criterion value on relative
efficiency depends on the true population total. The smaller criterion value of 1 results in a
higher relative efficiency for true population totals below a- 200; however, relative efficiency
is higher for a larger criterion value of 2 for true population totals above =2 200. Initial
sample size does not appear to make a difference as relative efficiency only improves slightly
with a larger initial sample size of 40 compared to 10 (Figure 6).
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Equation to Demonstrate when ACS is More Efficient than SRS
Thompson (1990} uses the following equation to demonstrate when adaptive cluster
sampling is more efficient than SRS. ACS is more efficient than SRS when:

Var(glv) > Var(j|n)

Note: v is the expected final sample size and n is the initial sample size; thus,

3 n
Ek:l Ziem(yi — 'w,-)2( - N
N-—-1 1—-=

She1 Vsewlyiw)? thi : 2
where =t=leedy 18 a measure of within-network variance ¢2. Then

2 1_% 2
O—wn(l__ﬁ)>0

v

Recall, Brown (2003) explains the aim of an adaptive cluster sample should be small
networks so the final sample size is not excessively greater than the initial sample size, but
networks should not be so small that the within-network variance is too low. As discussed
earlier, one way to achieve small networks is with a smaller neighborhood definition; however,
if the networks are very small the disadvantage of the relative small sample size of o2 to
% outweighs the advantage of a final sample size approximately equal to the initial sample
size. The same can be said for a large critical value. A large critical value that results with

very small network sizes may lead to o2, being too small relative to o2 even though 2 = 1.

Application of ACS to Lake Erie Smelt

The following application of ACS to Lake Erie smelt, taken from Conners (2002), high-
lights real problems researchers face when implementing ACS as well as what can be done to
overcome these issues. In 1998, ACS was used to sample Lake Erie smelt. The trial demon-
strated the feasibility of ACS; however, problems did arise. The design did not include a
four-adjacent cell neighborhood definition due to its impracticality in a hydroacoustic survey.
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Instead, the neighborhood consisted of parallel transect segments by using Loran navigation
lines as approximate parallels. Adaptive units for ACS were segments of parallel transects
over the same latitudes that meet the criterion C. Out of 24 units in the initial sampled
segments, 4 met the ACS criterion of a density greater than 5000 smelt/ha. Adaptive tran-
sect segments were surveyed on either side of the initial transect over the latitude range of
both “patches”. Efficiency of this ACS design was improved upon by using a survey vessel
with a high traveling speed when not sampling. There were locations where addition of
adaptive units was halted due to boundary on one of the sampled stratums and because of
approaching daylight.

‘The greatest concern for this trial arose when the detection of a large patch resulted in
a large final sample size. The researchers acknowledge the need for a “best” neighborhood
definition which would help ease the problem of a large final sample size. Large final sample
sizes can substantially increase the cost of a survey and potentially surpass a budget or
schedule. Methods to limit final sample sizes, mentioned earlier, would be beneficial for
future designs like this one.

Conclusion

Many populations exist in few, hi gh-density areas such as the Lake Erie smelt. Increasing
sampling in these areas through ACS sampling can increase sampling effort and provide
efficient estimation through appropriate choice in design type, estimation, and design factors
such as critical value, neighborhood choice, unit size, and sample size. The decision on when
to use ACS is more challenging especially if there is no prior knowledge about the population
of interest. If there is knowledge, the researcher should first make sure the population is
sufficiently rare and clustered for ACS to be efficient and practical.
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Appendix

R Code for Example

N<-100; n<-15: w<-15
X<Hc(4;1:1:1:1:1:1,131)1,131’1)1113); y<_c(2110:0’0:030:0:0’0:0s0;0:0!0,57)

w<-y/x #imean quadrat abundance for cluster i

#Hansen-Hurwitz

meanhh<-sum(w)/n
var.mean.hh<-((N-n)/(N*n*(n-1)) ) * (sum( (w-meanhh) "2))
meanhh

tauhh<-N*meanhh

taubh

var.mean.hh

var.total.hh<-N+*(var.mean.hh)

var.total.hh

#Horvitz-Thompson
alphak<-1-(choose(N-x,n)/choose(N,n)) #inclusion probabilities without replacement
%alphak<-1-({1-(x[k]/N))"n) #inclusion with replacement

alphakh<-matrix(0,nrow=v,ncol=v) #joint inclusion probabilities

for(k in 1:(v-1)){

for(h in (k+1):v)}{
alphakh[k,h]<—alphakh[h,k]<—1—(((choose(N—x[k],n)+choose(N—x[h],n)—
choose (N-x [h]-x[k],n)))/(choose(N,n))) #without replacement

1}

#alphakh(k,h]<-alphakh[h,k}<-1~(((1-(x[k]/N))"n)+((1-(x[h] /N)) "n)~
#((1~(x[k]+x[h] /M) "n))#with replacement
%alphakh[k,h]<—a1phakh[h,k]<—1—(((choose(N—x[kJ,n)+choose(N—x[h],n)~
#choose (N-x[h]-x[k],n)))/ (choose(N,n)) }#without replacement

tauhat<-sum(y/alphak)
muhat . 2<-tauvhat/N
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termi<-sum((1-alphak) *y"2/alphak 2)#first term of variance of tauhat
term2<-0 #second term of variamce '

for(k in 1:(v-1)){

for(h in (k+1):v){
term2<—term2+2*((alphakh[k,h}—alphak[k]*alphak[h])/(alphak[k]*alphak[h]))
}}

var.tauhat<-termi+term?
var.mubat.ht<-(1/N"2) *var.tauhat #variance of mu for HT
c(tauhat,sqrt (var.tauhat)) #estimate of total and SE
¢(muhat.2, sqrt (var.muhat .ht)) # estimate of mean and SE
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