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1. INTRODUCTION

A. Whitebark pine problem and study

White bark pine (Pinus albicaudis) has been identified as a “keystone species” in the subalpine zone of the
northern Rocky Mountains, a large portion of which falls into the Greater Yellowstone Ecosystem (GYE}.
The trees contribute nmch io the ecosystem including assisting in snow accumulation and previding a major
food =ource for the area’s native grizzly bears, red squirrels, and Clark’s nutcrackers [1). In vecent yeass, there
lhas been an increase in infestation by the mountain pine beetle ( Cronartivm ribicola) which is hypothesized

to be more deadly to trees already weakened by White pine blister rust (Dendroctonus ponderosar) infections

I2].

An ongoing panel study visits randomly selected transects every Lwo years to track mortality and pine
beetle infestation in individual trees. This same study records blister rust infestation every other survey {that
is, every four years). In order to evaluate the relationships between blister rust, pine beetle, and mortality,
there must be a statistical decision made in how to best deal with the high level of missingness in the data
(50%). Prior investigation indicated that the important blister rust states sre likely presence/absence of
bole cankers {individual infection sites}, this is the state that we will be referencing throughout the paper
[3). Our application has several complicating factors. These include the longitudinal rotating panel design,
the clustering of data due te transects, the binary nature of_the covariate of [interest, and the stalistically
rare occurrence of blister rust. For this analysis, we assume that the tree-level data can be trealed as
missing completely at random (MCAR). To be considered MCAR, the events that lead to the missingness
are independent both of ether observed variables and of anything unobserved that might tie them together
[4, 5], the nissingness in these data is random at the transect level but because trees cannot be random

within transects the assumption is vielated here.



B. Missing data methods

For our application, we explored methods used in working with clustered, longitudinal, binary data. A
very commottly used methad is complete case analysis, dropping incomplete observations from the data set.
This is an easy approach that makes no asswnptions regarding the missing data. However, if missingness is
not at random, or if the rate of missingness is high, this can cause bias in estimates [6]. There are approaches
to clustered data, taking into account the data structure when missingness is not at random, much as we see
in our data [7]. However, these rely on some observed values within a cluster from which to take information

for imputation, which we do not have since complete clusters are always missing.

Last observation carried forward (LOCF) uses the last known state for the missing value to fll the gap in
data. This method performs well so long as the variable with missingness does not change vatue at a high
rate [8]. Hot deck imputation is a commeon method for missing data. It takes the observed variables for a
record with missingness and uses them to identify the most similar record without missingness in the data
set; it then uses that information to fill the gap. There are various algorithms for identifying the most similar
record [9]. Additionally, there are single and multiple imputation approaches with single relying on the one
closest record, and multiple relying on identifying & pool of similar ehservations from whick o randomly
select [10]. Successful hot deck imputation relies on the ability to matelt observations based on important
variables. The pattern of missingness in these data make that a problem. Since blister rust histories between
panels are staggered, there are no cotuplete records that can he matched on the most important variable of

previous blister rust state at the same time periods.

Finding appropriate model-based approaches for binary data is an on-gaing effort. Traditionally, fitted
probabilitics have been to define binomial distributions for random draws [LL, ¥2]. Thkerc are some very
compiex methods that are more statistically valid, but are challenging to implement with available software
[18]. Recently, researchers have begun to use the normal approximation to the binomial so that more
traditional model-based approaches can be used, Bernaards, ot al. {2007) compare 3 methods of hinarvy
imputation(14]. The first is the “coin flip” method from defined binonrial distributions, the second and third

1nake draws from normal approximations based on fitted probabilities, one using .5 as a rounding threshold,



and one using an adaptive threshold for rounding [15]. These approaches were compared using various sizes
of data and rates of missingness. From this comparison, it was determined that for a larger data set with a
higher rate of missingness, the best performing model-based approach to binary missingness is the normal

approximation wsing adaptive rounding.

This paper will compare last observation carried forward, a coin flip approach using empirical cell pro-
portions, and the Bernaards approach advocated for a large data set with high missingness. The predicted
blister rust values for each of these methods will be compared to the true values from the data io compare
performance. Additionally, these methods will be implemented in our actual data set and the estimates and

associated errors will be compared with each other and a complete case analysis.

11. DATA

This study consists of 176 transects and 4770 trees. Transgects can hold anywhere from 1 to 220 irees.
The number of transects and trees in each panel can be seen in Table 1. Transects were established belweern

2004 and 2007, and before data collection in 2008 were randomly assigned to 1 of 4 panels.

Panel{Transeciz Trees
1 43 1014
2 45 1088
3 44 12849
4 44 1379

TABLE i: Panel information

During the original establishment surveys, the trees were Tully surveyed, meaning blister rust stale is
known. After the panels were established, 2 panels were visited each year with 2 different survey types
implemented. There were full surveys in which mountain pine beetle status, blister rust status, and tree
mortality were all recorded. Thers were alse pine beetle only surveys in which only meuntain pine bestle
statug and iree mortality were recorded. The pattern of panel visitation can be see in Figure 1. with X

representing a full survey (known Dlister rust status) and O representing a partial sarvey (no record of



cutrent blister rust status). We can think of these as follows, with X, indicating blister rust status:

X ={[X4,Xa,..., X, {Y]}

O ={[NA, Xs,..., X, {Y]}, where i is the total number of covariates

2004-2007 [Pa.nel 2008 2009 2010 2011 2012
1 X O X
observations | 2 X O
prior to panel| 3 0 X 0
establishment| 4 O X

TABLE I: Pane! study design, X represents a full survey year for a given panel, O represents & “pine beelle only” survey
year, that 4s, a year in which blisier rusl state was not recorded.

As a result of this randomization, transects in panel 1 that underwent full surveys in 2008 could have
been established anywhere from one to four years prior. This meaus that the last known blister rust status
could be anywhere from one to four years out of date. Some transects in panel 4, receiving their first full
survey since the implementation of the rotating panel desigr ir 2011, last had blister rust status recorded
in 2004, seven years prior. Our goal is to identify a method that best works with the data structure to take
advantage of ehe information recorded, thereby minimizing wasted effort, and potentially decreasing error in
model estimates. Although observations will be treated as nissing completely at random (MCAR), in truth

only the transects are MCAR, and not the individual trees.

III. COMPARISON OF METHODS

This study aims to conipare the predictive accuracy of last abservation earried forward (LOCF), a binomial
probability model using empirical proportions (BEP}, and a normal approximation probability model with
adaptive rounding which will be referred to as adaptive multiple imputation (AMI} from here. These will
be compared based on measures of sensitivity and specificity, as well as Cohen’s Kappa [16].

The data used for this section witl be panel 1 data from 2012; we will predict the true 2012 blister rust



vahies given known information. Owr true interesi is in predicting missing values 2 vears after an actual
observation, but this study will be predicting missing values 4 years after an observation. While the goal
and approach are not completely aligned, if methods perform well over 4 years we would expect even betier
performance after only 2. The covariates used are last observed blister rust state, number of years since
that status was first recorded, and the recorded diameter at breast height. Diameter was recorded during

lransect establishment, and never subsequently updated.

A. Imputation methods

C'omplete case analysis is nol used in this section, but will come into play when comparing mode] esti-
mates. The imputation methods compared using these three data sets are LOCF and model-based multiple

imputation.

1. Last observotion carried forward

Last chservation carried forward {LOCF } takes advantage of the Iongitudinal nature of these data. It is
a form of single imputation in which we assume no change in state from the most recent, observation on the
missing variable. In this case, we will fill our removed 2012 blister rust information using the observations
taken for the same trees in 2008. LOCF can be an effective method for slow moving processes [8). The
literature states that blister rust is such a process, this is also supported empirically through onr collected

data. Using this process generates one complete, imputed data set.

2. Empirical proportion imputetion

Using the 3 covariates of last observed blister rust state. number of vears since thal status was first
recorded, and diameter at breast height (in 4 categories: (1) DBH < 2.5, (2) 2.5 < DBH « 10, (3}
10 < DBH « 30, (4) 30 < DBH), we calculated the proportion of trees with blister rust and associated
95% confidence intervals. These empirical summaries can be found in Table 11I. Values marked with an

asterisk were unobserved in any complete data, so were filled based on similar combinations of the variable



levels.

DBH Previous BR = 1 Previous BR = 0
Time persisting{Proportion Lower bound Upper boundjProportion Lower bound Upper beund

1 1 1 1 i 0.33 0 1
2 1 1 1 0.03 0 0.37
3 0.81 - 0.05 1 0.03 Q 0.37
4 0.8 0.02 1 0.04 Q 0.4
5 1 1 1 4.03 0 0.39
i 0.89 .27 1 0.03 0 .39
7 G.90* .09 g .65

2 1 1 1 1 017 0 0.9
2 .94 .48 1 0.05 0 .47
3 .84 0.11 1 a.11 0 0.7
4 0.91 .35 1 18] a .68
5 0.91 (.36 1 0.05 0 .47
6 .91 0.34 1 0.14 0 (.83
7 0.82 0.06 1 0.2 0 0.98

3 1 0.5 -0 1 0 0 0
2 1 H i 0.08 0 0.62
3 0.85 0.16 i 0.09 0 0.06
4 0.88 0.23 ] 0.14 ¢ 0.82
5 0.87 0.21 1 0.12 G 0.75
6 0.92 0.38 1 0.29 ¢ 1
7 0.90% 0.07 0 0.58

4 1] 0.5 0 1 o*
2 1 1 1 G ¢ O
3 0.5 0 1 0.11 o 0.73
4 1 1 1 0.12 0, 0.75
5 1 1 1 0.17 o 0.9
6 (i ¢ Q 0.29 a
7 0 0 ] 0.25 0

TABLE 1I: Empirical proportiens of trees with blister rust and associated 95% confidence intervals for the entire data set
(observations from panei 1 in 2012). Values marked with (¥) are unobserved, and inferred from similar combinations of
covariates. The left columns are associated with trees that had blister rust bole cankers in the previous observation, and the
right columns are associated with thoze that did not have blister rust previously.

For each tree, we use the proportion associated with its vaiues on these three variables as the binomial
probability for a single draw, We build 5 imputed data sets to account for the uncertainty of not knowing
the truth. The literature on wultiple imputation, even for binary processes, states that 5 is enough, and

more than 5 does not improve efficiency of estimation [171.



3. Adueptive multiple imputation

Here we use a normal approximation to the binesmial distribution with an adapiive threshold in order io
impute our data. First, we model binomial probabilities using the same variables from which we caleulated
the empirical probabilities. Let p = previous blister rust state, t = time tree was known to be in that state,
and 4 = dianeter at breast height in em, we will use these in a saturated model for prediction. This gives

the following probability mode) for blister rust presence, using logistic regression:

Pr = logit™(~2.843 + 4.815p + .075¢ + —013d + —.034pt + — 016pd + 009td + —.0UGptd + €;)

For each observation missing a blister rust record, we input its valucs for previous state, known duration in
that state, diameter at breast height, to generate a probability of blister Tust in the bole for that particular
lree. These fitted probabilities are then inpui to determine the mean and standard error for s normal

approximation to the binomial distribution from which we draw an imputed probability, Ip,.

1p (BR =1} ~ N(Pr Pril - Pr}))

Using these imputes, we then determine the binary value of the variable. A relatively unbiased method to

accomplish this is to determine a threshold, T, based on an empirical mean.

T=a—- % (w0)/&{(1 - o)

Using this model-based approach, we can again generate 5 impute dala setz.

B. Compaorison of methods

We compared performance of LOCF, BEP, and AMI. Tlis included measures of sensitivity {irue positive
rate), specificity {trne negative rate), and Cochran’s Kappa {(a relative measure of agreement betwean two

sets of values). We present overall results, as well as those broken down by size class,



IV, RESULTS

Table IV gives a summary of the comparison of methods for all data, results by size class can be found in
Tables ¥ through VIII. We see that using all panel 1 observations, LOCF outperforms the other measures
in both true negative rate and Kappa agreement. However, BEP has a generally higher true positive rate,
and AMI performs closest to true when looking at the overall proportion instead of individual tree measures,
Through all size classes, LOCF outperforms in specificity and Kappa agrecment. This should be expected
since most trees do not have blister rust to begin with, and most do not get it. Both of these measures, in
this context, ave essentially testing how well the model identifies o tree without blister rust, which is the most

comimon state.  Sensitivity and the overall proportion are more interesting measures for such a statistically

Data Method Specilicity Sensitivity Kappa Predicted proportion True proportion

Fui LOCF 0.9622 0.5827 0.5981 0.1256 1612
AMI 0.9244 0.5512 0.4864 0.1523 :
0.8956 0.5591  0.43G6 0.1777
0.9107 0.5591  0.4654 0.165
0.8047 0.5512  0.4473 0.1688
0.9032 05197 0.4189 0.165
BEP 0.9062 1.5806 0.4814 0.1739
0.8971 0.5906 0.4641 4.1815
1.9092 0.566% 0.4687 0.1675
0.0168 0.622 0.5271 0.1701
0.9047 5906 0.4785 0.17561

TABLE EV: Performance comparison for all panel 1 data, 788 trees.

uncommon evené. The range of AMI predicted proportions is more consistent with the true proportion for
alt but the smallest size class. This has a low true proportion, and AMI overestimates. For size class 4, alt
predictions are quite poor, and we have the lowest values for sll measures. This is likely due to the small
sample size of 38 in that size class. When judging performance by sensitivity, BEP outperforms the others,
again for all but the smallest size class where all measure around .5. This may be due to the very small

proportion of trees in this size class with evidence of blister rust,



Data Method Specificity Sensitivity Kappa Predicted preportion True proportion

Size 1 LOCF  0.9722 0.5 0.5228 0.0696 886
AMI 0.9238 0.4286 0.3211 0.1078
0.9167 0.4286 0.3058 0.113%
0.9306 0.5714  0.4447 0.1139
0.8958 0.5714 D.3622 .1456
0.9236 0.5714  0.4263 6.1203
BEP 0.9306 0.5 0.3926 .1076
0.9514 0.5 0.4514 0.0886
0.9444 0.5 0.4306 0.0549
0.9583 0.5 0.4736 0.0823
0.9375 0.5 0.411 0.1013

TABLE V: Performance comparison for size class 1, 158 trees.

Data Method Specificity Sensitivity Kappa Predicted proportion True proportion

Size 2 LOCF  0.9877 0.5417  0.6293 0.0897 1649
AMI 0.9465 0.5208 0.51 0.1306
0.8889 0.5417 0.4133 {.1821
0.9177 0.5208 0.4498 0.1546
0.9138 0.5 0.4242 0.1546
0.9218 0.5 0.4402 0.1478
BEP 0.9095 0.5208 0.4339 01615
0.9095 0.5417  0.4511 0.1649
0.9465 0.4792 0.4731 0.1237
0.9465 0.5625 0.5455 0.1375
0.93 04792 0.4385 8.1375

TABLE VI: Performance comparism for size class 2, 291 trees.

V. APPLICATION

The real mot-ivatioﬁ behind this methods comparison was the high rate of error in mortalily estisnates
generated in a previous analvsis of these data [3] Ocenrrence of blister rust is statistically quite Jow, and
so estimates associated with postive blister rust values had especially high variance. We were interested in
seeing the effect of doubling our sample size on these cslimates by predicting blister tust values for the pine
beetle only surveys in a given vear. Here, we fit a model delermined by our previous work to data from 2012
using the original data for the nindel as well as datasets su pplemented by each of the methods explored. This

means that the panel 3 data used includes observed bliser rusi, values and the panel 1 data used inelndes

10



Data Method Specificity Sensitivity Kappa Predicted proportion True proportion

Size 3 LOCF  0.0498 0.6452  0.6327 8.1728 2060
AMI 0.9079 0.6129 0.5271 (.1993
0.8954 0.6129  0.5053 0.2093
0.9079 0.5968 (.5139 0.196
0.8996 0.5806  0.486 0.1993
0.887 0.5323 (0.4244 0.1993
BEP (.8996 0.6774 0.5635 0.2193
0.8619 0.6613 0.4882 0.2458
0.8619 0.6613 0.4882 0.2458
0.8745 7097 0.5451 (.2458
0.8703 0.7097  0.5382 0.2492

TABLE VII: Perfortnance camparigor for size class 3, 301 trees.

Data Method Specificity Seusitivity Kappa Predicted proportion True proportion

Size 4 LOCF  0.8286 0.3333  0.1006 0.1842 0789

AMI 0.8857 0.3333 0.1679 0.1316
0.8571 0.3333 0.1307 $.1579

0.8 0.3333  0.0757 0.2105

(.9143 0.6667 0.4452 0.1316

0.8 0.3333  0.0757 0.2106

BEP 0.8286 (0.3333  0.1008 0.1842
0.8286 0.3333  0.1006 _ 0.1842

{.8286 0.3333  0.1006 0.1842

0.8286 0.3333  0.1006 (.1842

0.8286 (.3333  0.1006 0.1842

TABLE VIII: Pecforinance comparison for size class 4, 38 trees.

imputed valyes,

We fit & mixed effects madel for tree mortality (1=dead, 0=live) using glmer in the lmed package in R
2.15.2. The fixed effects include transect level effects for east facing aspect, and a standardized value for

slope; tree level effects include Presence/absence of mountain pine beetle, diameter at breast Ireight, blister

11



rust status, and their 2 and 3 factor interactions. The model includes a random effect for transect.

Pr{Death) =logit (B + Bre + Has + F3br + Sympb + Psdbh+
Bebr * mpb + Bebr + dbh + Sympl + dbh 4 Sgbr » mpb + dbh + T transect; (1) + &)
Tj{i) o~ !-?:dN(O. 0»,-:}

g ~ HdN (0, )

£ represents a measure of east facing aspect, s is standardized slope value, br, mpb, dbh are blister yust,
mountam pine beetle and diameter, respectively. Transect is the randem lransect eflect associated with the

modeled tree. The parameter estimates vary for the two data sets; the fitted models are following:

Clomnplete ease:

Pr{Death} =logit™'(—4.052 + —.931¢ + .800s + 4.160br + 1.209mpb + —.030dbh + —1.8700br = mpbh+
— 492br + dbh + .096mpb = dbh + .469br + mpb = dbh + 7ymtransectyy; + &)
Tjiy ~ #dN (0, 1.5087)

€; ~ #dN(0,0)

LOCF:

Pr(Death} =logit~'(—3.644 4 — 668e + .155s + 2.190br + .632mpb + —.038dbh + 260br + mph+
- 079br « dbh + .110mpb + dbh 4 016br = mpb * dbh + Typtransectju; + )
Tjﬁ:‘ Rt fidi\{(l). 1A263J

£; ~ #dN[0,0)

12



AMI:

Pr{Death) =logit™(—3.665 + —.715e + .141s + 1L.880br 4 .822mph + —.036dbh + —.566br = mpb+
— 062br = dbh + .105mpb * dbh + 027br « mpb = dbh + 1y transect iz + €)

€ ~ 11dN ({0, o)

BEF:

Pr(Death) =togit~1(—3.482 + —.820e + .175s + 1.835br + .588mpb + — .038dbh + —.232br * mpb+
— .063br = dbh + .103mpb + dbh + .023br x mpb * dbh + 7 transect ;¢ + €;)
Ty ~ AN (0,1,1977)

& ~ {dN(0, o)

Table X shows estimated probabilities of mortality and associated standard errors {on the probability
scale} for the various combinations of Mountain pine beetle and blister rust states at tree diameters of 6,20,40
centimeters, The probabilities vary quite a bit, especiatly between caomplete case analysis and all of the other
methods, and especially in the presence of mountain pine beetle. As far as which estimates are better, this
is hard to say without a more in depth analysis of bias for the methods. However, we do see a decrease in

standard error from the compleie case analysis with every imputation method, which is promising.

VI. DISCUSSION

A. Summary

The various methods explored here each perform better under different measures. Last observation carried
forward could best predict healtly trees, and matched better aver all than any of the others according to

Cohen's Kappa, though “best” by that measure was still middiing. In general, the binonial approximation
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DBH 6 20 40
Data_ MPB BR. Probability{SE) Probability(SE) Probability (SE)

C.C. No No 0.02(0.60) 0.01(0.65) 0.01(0.79)
Yes  0.05(0.67) 0.00{0.96) 0.00(1.00)

Yes No 0.09(0.63) 0.20(0.60) 0.48{0.64}

Yes  0.45(0.74) 0.60{0.67) 0.78(0.88)

LOCF No  No 0.02(0.57) 0.01(0.60) 0.01{0.71)
Yes  0.10(0.59) 0.02{0.66) 0.00(0.82)

Yes No 0.07(0.59) 0.16(0.57) 0.45(0.60)

Yes  0.36(0.65) 0.39(0.62) 0.43(0.76)

AMI No Neo 0.02(0.63} 0.01(0.66) 0.01(0.73}
Yes  0.08{0.64) 0.02(0.69) 0.00(0.78)

Yes No 0.08(0.65) 0.18(0.63) 0.46(0.66)

Yes  0.20(0.69) 0.28(0.66) 0.43{0.65)

BEP No No 0.02(0.63) 0.01(0.66) 0.03(0.73)
Yes  0.09(0.64) 0.02(0.69) 0.00(0.79)

'Yes No 0.67(0.66) 0.16(D.64) 0.40(0.67)
Yes  0.23(0.69) .29(0.68) 0.40(0.59)

TABLE IX: Estimates for probebility of mortality and associated standard errors at 4 combinations of blister rust stale and
Mountain pine beetle state at 3 different tree diameters (in cm).

approach appeared to do better for predicting the overall proportion, but less well in predicting for individual
lrees. The binomial coin flip approach did best, for predicting inlected irees. AN of these comparisons varieel
soine according to the magnitude of the true proportion and the size of the tree and sam ple. When applying
imputation methods to earlier work in order to increase sample size, we see that we are able to decrease the

standard errors of our estimates.

B. PFurther work

The most egregions assumption made and violated in this study is that of independence. Only transects
are missing at random and the tree values should not truly be treated as independent since they are clustered.
Finding a way to account for that lack in imputation for these data would likely help any method Lo perform
belter predictively. Additionally, due to the differences in fitted model parameters between the complete

case analysis and all of the imputed analyses, it would be interesting to restart the model Btting proress

14



with an imputed data set.

(1] D. Mattson, K. Kendall, and D. Reinkart, Whitebark Pire communities: ecology and restoration. Island Press,
Washington, DG | 121 {2001).
{2] L. Koteen, Wildlife responses to climate change: Morth American case studies , 343 (2002).
3] K. M. Trving, . Hollimen, E. Shanshan, and K. Eeay, “Mulcf-.agcni; disturbances: cvaluating syncrgistic effects
of an introduced pathogen and native bark beetle on mortality of a foundation species,” (2013).
[4] D. B. Rubin, Biometrika 63, 581 {1976).
(5] R. J. Little and D. B. Rubin, Statistical analysis with missing data, Vol. 538 (Witey New York, 1987).
[6] I. R. White and J. B. Carlin, Statistics in medicine 29, 2920 {2010).
(7] J. Ma, N. Akhtar-Danesh, L. Dolovich, L. Thabane, et al., BMC medical research methodology 11, I8 (2011).
8] G. Fl‘e;nk Liu and X. Zhan, Journal of Biopharmaceutical Statistics 21, 371 {2011). -
(9] R. R. Andridge and R. I. Little, Interoational Statistical Review 78, 40 (2010).
[10] N. T. Longford, Missing data and small-area estimation: Modern analytical equipment for the survey stafistician
(Springer Science+ Business Mediz, 2005).
[1#} J. L. Schafer, Stagistical tethods in medical research 8, 3 {1998},
[12] 8. Var Buuren, H. C. Boshuizen, D. L. Knook, et al., Statistics in inedicine 18, 681 (1999).
[13] K. Lu, L. Jiang, and A. A. Tsiatis, Biometrics 66, 1202 (2010).
[14] C. A, Bernaards, T. R. Belin, and J. L. Sehafer, Statistics in medicine 26, 1368 (2007).
(18] N. J. Horton, S. R. Lipsitz, and M. Parzen, The Awmerican Statistician 57, 220 {2003).
[16) J. Cohen ef al., Educational and psychological measurement 20, 37 (1960).

[17] D B. Rubin, AMultiple imputation for nonresponse in surveys, Vol. 307 {Wiley, 1987).

[18] D. Bates, M. Maechier, and B. Bolker, Imef: Linear mized-effects models using §{ classes {2012), r package
version {.999999-0.

15



