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Abstract

Biosurveillance is the science of disease outbreak detection. Early detection provides health
officials additional time to fight the spread of disease. Throughout history, humans have contin-
ually developed new methods to fight the spread of disease, beginning with disease diagnoses.
Once cases are diagnosed, they can be followed prospectively and compared to an epidemic
threshold, a mark indicating an alarm should be raised signaling the start of a disease outbreak.
This paper examines a common structure used in case-detection diagnostic systems as well as
classical time series forecasting methods used to cstablish the alarm threshold level. In addition,
forceasting methods adopted from statistical quality control and their application to surveillance

forecasting are also explored.



Introduction

Biosurveillance is the science of real-time disease outbreak detection in people, plants, and an-
imals. This science applies to both natural and man-made epidemics. Man-made epidemics are
classified as acts of bio-terrorism. Through the use of efficient biosurveillance systems, health spe-
cialists hope to be able to detect a disease outbreak as soon as possible. This would allow ample
time to provide necessary medications and resources to slow the spread of the disease. While tradi-
tional methods of biosurveillance were concerned with studying outbreaks retrospectively, current
systems attempt to detect outbreaks as early as possible through the use of syndromic data, which
are early presentations of an illness. This paper explores the history of disease outbreaks and bjo-
surveillance as well as some of the case-detection and forecasting methods employed to detect and

slow the onslaught of these outbreaks.

Disease Qutbreak History

Interactions between humans and microbjal organisms have been present throughout history and
many have been beneficial. For instance, it is believed that mitochondria, the source of energy that
fuels our cell processes, evolved from bacteria in carly stages of evolution. These interactions are not
always beneficial however. “Human populations have been battling these unseen living organisms
throughout the course of history and, in many instances, losing” (Wagner, Moore, Aryel, 2006, p.
13}. Some instances of these outbreaks are, but are not limited to, the Black Plague, the 1918
influenza pandemic;the Lyme Discase outbreak of 1975 in Lyme, Connecticut, the Soviet Union
anthrax outbreak of 1979, the United States AIDS epidemic of 1981, and the SARS epidemic of
2003. These outbreaks are not limited to natural causes however. The anthrax attacks of 2001,
which occurred only one week after the September 11 attacks, made evident the possibility of a

large scale bio-terrorism act. This led to increased efforts in biosurveillance in the past decade.

Biosurveillance History to Present
Disease reporting is thought to have evolved into its current form from 1949 to 1970. Much of the
credit is given to Alexander Langmuir, the creator of the Epidemic Intelligence Service, a program

within the American Centers for Disease Control and Prevention (CDC). Langmuir proved to be



influential in the drive for disease reporting. Currently, the lead agency related to biosurveillance af
the federal level is the CDC. In addition to operating at the federal level, the CDC is responsible for
the collection, analysis, and dissemination of disease occurrence and mortality data to both state
and local health departments. The availability of these data gave agencies the ability to study and
diagnose past occurrences of epidemics. Until the early 1970’s, the study of disease occurrences was
reserved for physicians. This specific discipline soon shifted to epidemiologists, individuals with
extensive skills in questionnaire designs and epidemiological methods. Furthermore, they typically
had extensive training in statistical analysis. Unlike physicians, this allowed epidemiologists to
examine and interpret large quantities of casc data, as opposed to studying individnal patients.

The acquisition of data needed to characterize outbreaks begins at the case detection stage.
This stage is concerned with noticing the existence of a disease within a single individual. The
entities most often associated with case detection are physicians, veterinarians, nurse practitioners,
pathologists, laboratories, and surveillance systems. Case detection by medical specialists and
laboratories is simply a product of routine operation. In an attempt to thwart attempted bio-
terrorism attacks in addition to natural outbreaks, the case detection method of drop-in surveillance
has been employed (Mandi & Paola). This method examines physicians’ reports on numerous
patients in the weeks leading up to large events, such as the Olympics, and records whether the
patients meet various syndromes of interest. The hope is that in the weeks leading up to a large
event a baseline case rate can be established. Once an event is underway, disecase cases can be
compared to this baseline rate on a daily basis to examine possible indications of an outbreak.

Finally, advances in computing power have allowed case detection through computers. Case
detection through computers is currently employed in an attempt to detoct syndromes. The ma-
jority of infectious diseases of interest typically present an initial set of syndromes prior to their
manifestation. These computer based systems monitor for syndromes associated with diarrhea,
respiratory illnesses, hemorrhagic, and influenza-like conditions. The techniques used to detect and
classify these syndromes will be explored later.

Once systems were established that could provide case data over long periods of time from
one location to another, epidemiologists were able to study these data to determine the existence
of an outbreak. The classification of outbreaks was performed retrospectively, typically wecks

or months after a given outbreak had occurred. While these early analyses provided insight into



possible causes of outbreaks, they were useless for early outbreak detection. However, as surveillance
databases provided up-to-date cage data, outbrcak detection methods were developed to predict
outbreaks before large-scale infestations were reached. Early detection would allow ample time for
the necessary resources to be dispersed to the individuals most susceptible to a specific disease.
These methods are currently employed and are based on previous days’ case counts. Particular
methods related to these practices will be discussed later,

In recent years surveillance systems have shifted their focus from not only analyzing case counts
over time, but by also exploring syndromic data. Syndromic data are data associated with the
earliest indicators of disease presence. Examples of such data are over-the-counter {OTC) drug
sales, absenteeism rates, online health information rates, phone calls to nurse hotlines, and many
more. To use these data, there is an underlying assumption that individuals wiil attempt to self-
‘treat before visiting a medical professional (Burkom & Shmueli, 2010). The hope is that a disease
outhreak will manifest itself through an anomaly in syndromic data, compared to background
behavior of these syndromic data. One of the large and ongoing problems associated with using
syndromic data is defining the background behavior. Onece this background behavior is defined
however, a threshold level can be created that dictates whether an outbreak alarm is signaled.
This threshold is typically between 2 and 3.5 standard deviations of a model’s prediction, which is

developed from background behavior data.

Case-Detection Algorithms

Prior to-predicting or detecting-an outbreak, individual disease cases must be identified. Thus,
case detection is an essential part of biosurveillance. Following the anthrax attacks of 2001, efferts
increased to create a large-scale disease detection system. In a perfect world, each day every indi-
vidual could enter their current health information into a system, and the computer conld predict,
with associated probabilities the likelihood that the individual had a specific disease. This would
allow up-to-date data on all individuals, making it casier to detect the presence of an outbreak.
While this is obviously not feasible, the implementation of these systems at a smaller scale and
their associated automated methods can prove to be useful.

The programs used to calculate various case-specific probabilities are known as diagnostic expert

systems. These systems, like physicians, use patients’ symptoms to provide a specific diagnosis.



Typically, patients’ symptons are entered into a system by a physician or an assistant. Stored
within these systems are data on disease prevalences as well as sensitivity and specificity estimates
for disease tests. Disease prevalence is defined as the proportion of a population found to have a
certain condition. The sensitivity of a test is the probability that the test will detect the discase
when the disease is present. In addition, the specificity of a test is the probability that a test will
detect that a disease is absent in situations when an individual lacks the disease of interest. Thus

the corresponding equations for sensitivity and specificity are as follows.

sensitivity = P(T+|D*) (1)
specificity = P(T|D™) (2}

In Equations 1 and 2, T+ and T'— represent the result of the test while D% and D~ represent the
presence and absence of a disease, respectively. Given disease prevalence and associated sensitivity
and specificity of tests for a disease, these programs proceed to generate a differential diagnosis for
a sick patient. This differential diagnosis is simply a list of diseases most likely to be responsible
for a specific patient’s symptoms. The differential diagnosis uses the corresponding symptoms
to calculate a posterior probability for every disease that is likely responsible for the symptoms.
These diagnoses are often computed using Bayes’ rule. To begin, the prior probability for a disease
is defined as the disease prevalence. These will be represented as P(Disease)=P(D+). Given
specific symptoms, also called findings, a posterior probability can be computed for a specific
disease. These case-detection systems use Baycs’ rule to compute the posterior probability of
a specific disease. The example below demonstrates the basic principles of many case-detection
systems. Specifically, the Bovine-Syndromic Surveillance System (BOSSS), which is a web-based
disease-reporting surveillance system for cattle, uses an odds-likelihood form of Bayes’ rule. This
odds-likelihood form of Bayes’ rule uses the sensitivity and specificity of given tests to compite the
posterior probability of a given disease. Before exploring the odds-likelihood form of Bayes’ rule

used by BOSSS, Bayes’ rulc and its application to case-detections will be explored.



'I'o begin, suppose there are several diseases of interest thought to be the cause of a particular set
of findings (symptoms). These diseases can be represented as Dy, Dy, ..., D, where D) represents
disease 1, D represents disease 2, and D, represents a disease free state. To calculate the posterior

probability of disease 1 given a set of findings F, Bayes’ rule can be used as shown in Equation 3.

P(F|DT) + P(D})

PIOTIR) = wmm * P(D]) + P(FID}) + P(D]) @

The data used for the example below are in Tables 1 and 2. These data and application to these
methods are courtesy of the text “Handbook of Biosurveillance” (Wagner, Moore, Aryel, 2006).

Prior Probabilities and Qdds of FMD and MCD

Disease P(Discase} dds(Disease)

Foot and Mouth Disease (FMD) 0.001 0.001001

Mad Cow Disease (MCD) 0.001 0.001001
Table 1

Conditional Probabilities for FMD and MCD

Finding Discase p(Finding|Disease)
Drooling of saliva present FMD present 0.95
Drooling of saliva present FMD absent 0.05
Drooling of saliva present MCD present 0.001
Drooling-of-saliva present MCD absent- 0:05
More than one animal affected FMD present 0.95
More than one animal affected FMD absent 0.2
More than one animal affected MCD present 0.001
More than one animal affected MCD absent 0.2
Table 2

Suppose that a single cow is observed drooling saliva and_it is also observed that a nearby cow is
also sick. Given these findings, the posterior probability of the cow having foot and mouth disease
can be computed. The steps used to caleulate this posterior probability are shown below. First,

the quantity of interest is:

P(FMD|drooling of saliva present, other sick cow detected)



[T PUFMD*) « P(EMD)

P(FMDY|f1, for s fi) = = k=1 - (5)
I] PUfu|FMD*) « P(FMD+) + [ P(fy| FMD~)+ P(FM D-)
k=1 k=1

Using Equation 5 above, as well as the information provided in Tables 1 and 2, the posterior
probability of foot and mouth disease can be computed given the findings of drooling and another

sick cow present.

P(FMDYd, sc) =
PlAIFM DY) x P(sc| FMD%)+ P( (FMDY)
P(d|FMD*) x P(sc|FMD+) % P(FMD%)+ P(d|FMD-) + P(sc]FMD- ) * P(FM D)

B 0.95 = 0.95 * 0.001
7 0.95 + 0.95 % 0.001 + 0.05+ 0.2 + 0.999

= {1.083

Similarily, given these two findings, the posterior probability for mad cow disease can aiso be

computed. Once again, the data from Tables 1 and 2 will be used for this calculation.

P(MCD*|d, sc) =
P{d|MCD*)  P(se|MCDV) » P{(MCD%)
P MCD*) x P(sc|]MCD+) « P(MCD+}+ P(d|MCD~) « P(se| MCD~ )* P(MCD-)

B 0.001 = 0.001 # 0.001
~0.001 % 0.001 % 0.001 + 0.05%0.2 0.999

=1%10"7

Therefore, the posterior probabilities of foot and mouth disease and mad cow disease, given the
findings, are 0.083 and 1107 respectively. While this method works well, using the odds-likelihood
method is much less cumbersome.

To describe the odds-likelihood form of Bayes' rule adapted by BOSSS, the definition of odds

must first be defined. The odds of an event are simply defined as

P
nidds = 1—= (6)

—p

In Equation 6, p = P{(Event occurs) and the quantity 1 —p = P(Event does not occur). Given this

|



Using d to represent drooling and sc to represent another sick cow, Equation 3 can be written as:

P(FMD™Y|d, sc) =

P(d, sc| FMD*%) « P(FM D)
P(d,sc[FMD¥)x P(FMD*) + P(d, sc| FM D) x P(EMD")

To begin, the term in the numerator will be evaluated first. Note that for this computation as
well as that used by the BOSSS odds-likelihood method, the assumption is made that all findings
are independent of one another. In practice, the application of this assumption is known as a
naive Bayes classifier. While this assumption seems overly simplistic, BOSSS’s pilot studies showed
that this system provided disease reports comparable to those created by veterinarians (Shepard,
Toribio, Cameron, Thomson, Baldock. 2006). Therefore, for a set of m findings f1, fo, ..., fin, the
probability of observing them given FMD is as follows.

e

P(f1, for ooy fm| FM DY) = T] P(fe)PM D) (4)
k=]

For this particular example, there are two findings, namely drooling and another sick cow. There-
fore, in Equation 4 these findings represent f; and f5. After substituting this quantity into the

numerator, Equation 3 now becomes:

_ P(d|FMD* )+ P(sc| FMD V)« P(FMD*)
P(FMDid, sc) = P(d,scIFMDﬂtP(FJMD'l')+P{d,sc)fFMD“‘)tP(FMDT)_

Using the law of total probability along with application of Equation 4, the denominator equates
to:

P(d,sc|FMD™) + P(FMD*) + P(d, s FMD™) * P{(FMD™) =
P(d|FM DY) x P(sc|FMD*Y) & P(FMDT) + P(d|FMD™) » P{scfFMD™ )« P(FMD™)

Therefore, for multiple findings, after combining the numerator and denominator terms from above,

Equation 3 can be expressed as:



_ P(drooling saliva|FMD*)  P(other sick cow|FMD)

dds(FMD
~ P(drooling saliva[FMD ™) * P(other sick cowjiMD-) * C4s(FMD)
095 0.95
001001 =
= 508 * o3g * 0001001 = 0.09

Using the formula probability = 1_':‘;33 s the posterior odds of .09 equals a posterior probability of

0.083, the value obtained using the previous method.

In addition to the BOSSS diagnostic expert system, prominent systems for human diagnostics
are the Iliad, DXplain, and Simulconsult systems. These systems perform on a nearly equivalent
level to-physicians, though are not used widely in today’s medical practices as the data entering has
proven to be extremely time-consuming. However, the utilization and efliciency of these systems

for cattle continues to be explored.

Classical Time Series Forecasting Methods

Data on a multitude of disease counts are currently readily available for many health agencies.
The counts are continually examined by surveillance systems in an attempt to detect an anomaly
in the number of occurrences of a specific disease at any point in time. Through the use of these
surveillance systems, health officials hope to detect a disease epidemic as soon as possible and
provide the necessary resources to slow the spread of the disease at hand. The methods used wil]
be explored using both real and simulated data.

Figure 1 below displays the Center for Disease Control and Prevention (CDC) weekly counts of

influenza, from 2003 to the beginning of 2010 in the United States.

CDC Weekly Influenza Cases
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Figure 1: Weelly influenza cases in the United States Jfrom 2003 to 2010.



definition of odds, the odds-likelihood form of Bayes’ rule is defined as:

Odds(D|f) = LRy p * Odds(D) (7)

In Equation 7, LRy p is the likelihood ratio, not to be confused with the likelihood-ratio test. The
likelihood ratio defined above is expressed in terms of sensitivities and specificities. Two versions
of this likelihood ratio exist, one for positive test results and one for negative test results. The

likelihood ratio positive (LR1) and likelihood ratio negative (LR™) are defined as follows:

+_ P(T*|D4)  sensitivity
- P(TH|D-)  1- specificity

(8)

_ P(T7|D+)  1-sensitivity
~ P(T-|D-) specificity

LR~ ()

The derivation of Equation 7 is quite trivial. Starting with our definition of odds in Equation 6,

Odds(D|f) can be cxpressed as:

P{DandF
PDIf) JW—) P(DandF)

C = P(D%andF) [
P(DC[f) _(P_(F}_) P(DCandF)

Odds(D|f) =

_ _PUID)sP(D) _ PID)  P(D)
~ P{ID%Y+ P(D%) ~ P(fID%) * P(DO)

= LR}"D * OddS(D)

Using the odds-likelihood version of Bayes’ rule will yield the same posterior probabilities as the
previous method. Once again, the assumption is made that any findings are independent of one
another. Similarly to the previous example, assume a cow is observed drooling saliva and there is
another observed sick cow. Given these observations, the posterior odds for foot and mouth disease
to calculate are Odds{FMD|drooling saliva, other sick cow). Since the cow was observed drooling
saliva and another sick cow is present, the likelihood positive ratios are the appropriate ratios to
use. This yields:

Odds(F M D|drooling saliva, sick cow) = LR?

+
draoling saliva| FAf D * LRuther sick cow] FAf D * OddS(F MD )



‘The first forecasting method that will be discussed is the use of control charts to detect disease
outbreaks. In biosurveillance, these control charts operate by creating an upper control Hmit
(UCL). Using this method, outbreaks are defined when a disease count surpasses this UCL. To
construct the UCL, the mean count and standard deviation from background time periods must be
calculated. If Xj,Xs,...Xy represent counts from the background activity, then the background

mean estimate /i and standard deviation estimate & can be calculated as shown below:

N
.1
pzﬁ;){i (10)

L, X
=i w1 D (X — )2 (11)
i=1

The underlying assumption used here is that the count data from the background activity follows

a Normal distribution. The UCL is then defined as:
UCL=j+ ko (12)

In Equation 12, k is typically equal to either 2 or 3. Given the assumption that the background
activity follows a Normal distribution, setting k& equal to 2 allows a 5% chance of mistakenly
characterizing a count as an outbreak while k equal to 3 corresponds to a 1% chance. Using the
data from Figure 1, fi and ¢ werc continually updated using the past IV observations. Figwre 2

displays the UCL plotted alongside the influenza data from F igure 1.

CDC Weekly Influenza Cases
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Figure 2: Influenza case data plotted alongside control chart UCI using k=2.
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In Figure 2, the control chart method properly detects every outbreak. However, it is far too
sensitive as it fails to account for seasonality that may be present in certain diseases, such as
influenza. Furthermore, while it is common to observe many small false alarms, the differences
between the observed counts and UCL during influenza season in Figure 2 arc very large. One way
to account for seasonality that may be present in a disease is to forecast counts using a select few
of the past observations. This is accomplished by using an approach similar to the control chart
method. First, a normal distribution is fit to the previous N observations. The estimated mean
and standard deviation for this distribution are calculated using Equations 10 and 11. Thus, the
predicted count valuc for any time ¢ is defined as the average of the previous N observations, as

shown below.

1
X£+l = E(Xt + Xf__] + X£_2 +...+ Xt—(f\‘—l))

Similarly to the control chart, a threshold value can be computed by adding % standard deviations
to the forecasted count value using & from the previous N observations . Using a 4-week moving
average with k=2, Figure 3 displays the new threshold plotted alongside the count data from Fj gure

1.
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Figure 3: 4-week moving average threshold level.
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As Figure 3 above shows, the moving average threshold performs much better than the control
chart threshold as it accounts for the seasonality nature of influenza. However, for these data
there are still many instances in which the observed count is slightly above the threshold, which is
not uncommon as noted earlicr. Figure 4 below provides threshold levels for a two-week moving
average, a six-week moving average, and an eight-week moving average in addition to the four-week

moving average from Figure 3. All threshold values were created using an a=0.05 significance level.

CDC Weekly Influenza Cases
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Figurc 4: 2, 4, 6, and 8-week moving average threshold levels.

As it is difficult to tell from the graph alone, the performances vary across the different values chosen

for N. Table 3 below swmmarizes the results of the contrel chart and moving average forecasting

methods.
Method Weeks Above Threshold
UCL 61
Moving Average: N=2 108
Moving Average: N=4 98
Maving Average: N=6 107
Moving Average: N=8 107
Table 3

The table above suggests that the moving average forecasting methods would signal more alarms
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than the control chart method though the magnitude of the alarms raised for the control chart were
much larger. As noted earlier, the distribution of the previous N-weeks’ counts were assumed to
come from a Normal distribution and parameter estimates were obtained using Equations 10 and
11. Instead of using Equations 10 and 11 to provide the estimates, it may make more sense to use
maximum likelihood estimation to provide the estimates. Given today’s widely available statistical
software, this is quite simple to do. For each set of N observations preceding a given time, an
estimate of 1 and ¢ can be computed using MLE. Table 4 below summarizes the results for the

control chart as well as the two estimation techniques for the moving average,

Method Weeks Above Threshold
UCL 205
Moving Average: N=2 108
Moving Average: N=4 08
Moving Average: N=6 107
Moving Average: N=8 107
MLE Moving Average: N=4 a8
MLE Moving Average: N=6 118
MLE Moving Average: N=8 115
Table 4

As Table 4 above shows, the MLE four-week moving average yielded the same amount of observed
weeks above the threshold. These may not be the same weeks however. Furthermore, for the
six and eight-week moving averages the MLE threshold was surpassed more than the original
moving average method. To better handle the expected seasonality spikes, regression analysis with
seasonal components is often used. To determine proper forecasting methods from one disease
to another, simulation studies on numercus artificial disease-specific outbreaks are studied and
compared. Methods with poor sensitivity are obviously unacceptable, as munerous outhreaks will
1ot be detected. However, it is difficult to estimate the cost of numerous false alarms. Therefore,
some appropriate middle ground must be chosen. These comparison techniques will not be discussed
further in this paper.

To allow for easier comparison between these techniques and others, a simulated influenza time
series is shown below with an induced outbreak beginning on the 59" day. Also note that on day
31 there is a slight anomaly from the background behavior, though ideally an alarm shonld not, he

sounded here.
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Simulated Influenza Cases
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Figure 5: Simulated influenza date with induced outbreak,

Prior to examining new methods, the previous moving average technigues were employed here.
Since these are daily data, fomr-day, onc-week, and two-week moving averages were computed.

These three moving averages’ thresholds plotted alongside the data are shown below in Figure 6.

Simulated Influenza Cases

§ 1

©w o | — MAN=4

S 7 — MAN=7

8 o — MAN=14 J

S g

=

= |

[10]

& &

=3

E o

o I T ; T I | I
0 10 20 30 40 a0 60

Days

Figure 6: 4-day, 1-week, and Z-week moving average thresholds.

Table 5 below provides a summary of results for the three moving average methods described above.
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Method Days Above Threshold Days to Detect Qutbreak

Moving Average: N=4 10 1

Moving Average: N=7 6 2

Moving Average: N=14 8 1
Table 5

From this one simulation the one-week moving average yields the least amount of false alarms.
However, as a consequence it takes an additional day to detect the induced outbreak. Thesc are
the trade-offs that need to be considered when evaluating these methods. Two additional methods
that are commonly used in disease forecasting are cumulative sum control charts (CUSUM) and
exponentially weighted moving averages (EWMA).

The cumulative sum technique is a method used to detect small shifts in the mean of a process.
The cumulative sum continually sums deviations from a desired refercnee value to until the devi-
ations exceed some threshold level. As seen in the control charts and moving average examples,
interest lies in observed counts exceeding an upper threshold level only. Here, the reference level

#to is defined as the in-control process mean. The definition of the CUSUM is described as follows.

Ci=Xi—po+ Cimy

Above, X; is the i'* observation and C; is the i® cumulative sum. Therefore, it then follows that

the sccond cumulative sum up to the N*® cumulative sum can be expressed by:

C = (X2 — j10) + (X1 — po} = (Xa — jo) + &y

Cn = (Xn — o)+ Cn_y

As previously noted, the only concern is if counts exceed an upper threshold. Therefore, the upper

cumulative sum of interest is defined as:

Cl.““ = max[0, X; — (po + k) + Cil (13)

In Equation 13, k is called the reference or allowable value and is defined as & = iw where u; is

defined as the out-of-control process mean. The cumulative sum in Equation 13 is then compared

15



to some decision interval H. Koshti (2011) references Montgomery (2001) that H should be equal
to five multiplied by the in-control process standard deviation. Using this decision interval, alarms
are signaled when C;' reaches H. When this happens, the algorithm resets to zero and starts over.

The plot below shows that the cumulative sum exceeds the decision threshold, H, on day 60.

Cumulative Sum Method
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Figure 7: Cumulative sum and decision threshold,

For these simulated data, this method required an additional day to detect the induced outbreak.
However, there was not a single false alarm leading up to the real outbreak, R Statistical Computing
Software contains a surveillance package (Hohle, 2007) with a cumulative sum function algo.cusum.
This function approximates the cumulative sum based on standardized observed counts. This
function only accepts series at the weekly or yearly level. Therefore, the simulated time series
used above was assumed to be weekly data when the algo.cusum function was employed. Figure 8
implies that for this one simulation, the algo.cusum function was slightly more sensitive than the
algorithmm used above in Figure 7. However, both CUSUM algorithms detected the induced spike

at the end of the series.

16



R's algo.cusum function
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Figure 8: R’s algo.cusum results.

The final forecast method to be explored has recently garnered attention in health surveillance,
and was adopted from statistical quality control. Instead of giving equal weight to each observation,
as seen in the moving averages, exponential weighting allows the weight given to a particular
obscrvation to decay as the observation becomes older. In general, exponential smoothing forecasts
are simply weighted averages of past observations, where older observations are given less weight.

Using this technique the EWMA statistic for some time 7 is defined by:
Li=aX, + (] - Q)Lg_.l (14)

In Equation 14, « is a fixed smoothing coefficient between 0 and 1. Typically, o values between

0.1 and 0.3 are used (Burkom, Murphy, Shmueli, 2007). Expanded, Equation 14 is as follows:
Li = aYi + a{l — a)Y,_4 +a(l-a)?Y, o+ .. (15}

Each individual L; is then compared to some UCL, If Ly reaches the UCL an alarm is raised. Note
that an initial value for L, must be chosen. Often, an estimate of the in-control Process mean or

the first observed count is used (Does, Meulen, Vermat, 2008). Under the assumption that the X/s

i



are independent random variables, the variance of the statistic, Ls, derived by Zhang (1998) is:

of, = o’ (G - (1 - &) (16)

In Equation 16, o2 is an estimate of the variance of the observations under outbreak-free condi-
tions. Furthermore, depending on the size of o chosen, after the first fow observations Equation 16

simplifies to:

oh = 5) (17)

Using this variance, an upper control limit for the tost statistic, L, is computed using:

UCL = pg + ko,

Above, up represents the in-control process mean and a value of 3 for & is often suggested (Mont-
gomery, 2001), Similarly to the cumulative sum approach, this method does not signal any false

alarms and requires one day to detect the outbreak. This is shown below in Figure 9.

EWMA Method

—— EWMA Statistic
— EWMAUCL

Simulated Influenza Cases
0 20 40 60 80
|
>

0 10 20 30 40 50 60

Days

Figure 9: EWMA statistic and EWMA UCL.

The methods cxplorcd here are a small sample of techniques used to detect disease outbreaks,

Furthermore, while these methods assumed a normal distribution to obtain alarm levels, it is not
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uncommon to create these levels using Poisson distributions. Table 6 summarizes the resulis of the

forecast methods on this simulated outbreék.

Method False Alarms Days to Detect Outbreak

Moving Average: N=4 6 1

Moving Average: N=7 2 2

Moving Average: N=14 3 1

CUSUM 0 2

EWMA 0 2
Table 6

Both the CUSUM and EWMA imethods required two days to detect the outbreak and signaled
no false alarms. However, the one week moving average required only one day to detect the
outbreak while signaling only two false alarms. It is precisely these trade-offs between falge alarms

and detection timeliness that need to be addressed when evaluating methods.

Conclusion and Future Work

The field of biosurveillance is an ever-expanding science exploring methods to lmit catastrophic
disease outbreaks. Methods discussed in this paper range from disease diagnostic systems to
forecasting cases using traditional time series methods, as well as new techniques adopted from
statistical quality control. Techniques for evaluating these methods examine the timeliness of de-
tection along with trade-offs between sensitivity and specificity of tests. For more information on
the specific examination of these trade-offs, one should reference literature on receiver operating
characteristic curves (ROC’s). In recent years, systems have began using these same forecasting
methods on data such as absenteeism, nurse hotline calls, and over-the-counter drug sales to detect
disease outbreaks even sooner. Currently, the major obstacle to forecasting these data is defining
some background behavior when no disease is present. Given time, forecasting these syndrormic

data will most certainly decrease detection time, saving lives and resources in the process,
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