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1 Introduction

1.1 Ecological Background

Whitebark pine (Pinus albicaulus) is a conifer species native to the Greater Yellowstone
Ecosystem (GYE), and occupies a subalpine niche habitat, growing almost exclusively in the
region immediately below timberline. Whitebark pine produce large, nutrient-rich cones, an
important food source for the Clark’s nutcracker (Nucifraga columbiana), red squirrel (Sci-
urus vulgaris), and notably the black and grizzly bear (Ursus americanus and Ursus arctos
horribulus). With the Yellowstone grizzly currently federally listed as an endangered species,
conservation of the whitebark pine is a particularly sensitive issue.

Whitebark pine in the GYE has sustained damage from two biological agents. Recent years
have seen a large-scale outbreak of attack from the native mountain pine beetle (Dendroc-
tonus ponderosae), thought to be linked to a recent pattern of warmer winters. In addition
to this more recent threat, the GYE whitebark pine has also experienced infection over the
past several decades from blister rust (Cronartium ribicola), an exotic fungus introduced to
North America in the 1920’s, which can impact all five-needled pine species. Blister rust
disrupts the cambium layer of infected trees, and will eventually kill branches or whole trees.
It has also been hypothesized that mountain pine beetle attack may occur more frequently
in stands of whitebark that have been weakened by blister rust infection.

When blister rust spore dissemination occurs, the spores are suspended on atmospheric water
droplets (clouds or fog), making the patterns of spread subject to climate or microclimate,
which is in turn influenced by local topography. Infection does not spread tree-to-tree; rather,
it is spread by means of an intermediary host, typically shrubs of the Ribes genus (currant
or gooseberry) but certain forbs, such as Indian paintbrush (Castilleja) and elephanthead
(Pedicularis groenlandica), have also been shown to transmit blister rust infection.

1.2 Study Design

During the summer and fall field seasons of 1995-2010, the Gardiner district field crew op-
portunistically sampled whitebark pine in and around the Absaroka-Beartooth Wilderness
of the GYE, as part of a project intended to characterize the spread and severity of blister
rust infection, as well as assessing the possible relationships between environmental variables
and infection rates. At each sampling location, the health of each whitebark pine tree within
a 300 foot by 10 foot belt transect was assessed, and all sources of damage were recorded
and classified by severity. In addition to tree health, site characteristics were also recorded:
elevation (found using a handheld GPS), slope (found using a clinometer or compass), aspect
(found using a compass), forest type (according to the Mattson-Despain cover type key), and
Ribes presence.

Sampling was not random. Instead, sampling areas were chosen so as to provide as much
spatial coverage of the primary study area (A-B Wilderness and surrounding area with white-
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bark pine) as possible. In each area, sampling site (transect) placement was conducted as
time and workflow allowed, with the intent of sampling stands of trees that were “repre-
sentative” of the immediate area. Infection is often difficult to see, and the majority of the
forest canopy represented in a 300 foot transect is simply not visible from the start of the
line. Even though sampling area selection and transect placement were not random, this
effective “blinding” likely mitigated any potential field technician bias related to blister rust,
that is, choosing sampling sites with high or low amounts of blister rust. The distribution
of sites sampled is shown in Figure 1.

Figure 1: Sites sampled during the years 1995-2010.

Sampling was conducted over a period of 16 field seasons, with each season representing a
relatively broad spatial coverage of the study area. However, due to the logistics of back-
country travel, it was often advantageous to sample heavily in one valley before moving to
the next, and so on. Resulting temporal patterns in sampling efforts are shown in Figures 2
and 3, first showing the spatial distribution of sampling sites for 2-3 year intervals, then as
a single map with colors on a color gradient representing sampling year.

2 Evidence of Spatial Autocorrelation

2.1 Graphical Assessment - Mapping Site Infection Rates

Without any further analysis, it can certainly be surmised that infection rates will exhibit a
degree of spatial autocorrelation, that is, that sampling sites closer together will have similar
infection rates. The rate of infection can be expected to be related to the degree of spore
presence at a particular site, and the degree of spore presence is directly driven by the pres-
ence of fruiting bodies at active infection sites. Therefore, we can expect to see a pattern
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Figure 2: Sampling sites are shown, divided into three-year intervals.
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Figure 3: All sampling sites are shown, with colors corresponding to sampling year.
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Figure 4: Proportion of infected trees for each sampling site.

of “hot spots” and “cold spots”: areas in which there is a high degree of infection due to a
natural “feedback” cycle, and areas in which this has not yet occurred.

Plotting the raw infection rates (defined as #InfectedTrees
#TotalTrees

at a given sampling site), the pattern

of spatial autocorrelation is immediately evident (see Figure 4), particularly the consistently
high rates of infection in the northwestern and southwestern portions of the study area (the
Absaroka front, south of Livingston, and the Tom Miner/Buffalo Horn Pass areas respec-
tively) and the consistently low rates of infection in the southeastern portion of the study
area (the southern Beartooth range, near Cooke City).

2.2 Graphical Assessment - Mapping Site-level Model Residuals

An initial intent of this research was to explore possible relationships between site-level vari-
ables (elevation, aspect, etc.) and infection rates. A binomial logistic regression model was
fit, with the form given below, where yi = number of infected whitebark pine trees at site i,
mi = total number of whitebark pine trees at site i.

yi ∼ Bin(mi, πi)

logit(πi) =
∑p

k=1 βkdk(xi)

In this notation, each dk(xi) refers to covariate dk observed at location xi. The covariates
used in this model were recorded on-site. Elevation (km) and slope (degrees) were treated
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Figure 5: Deviance residuals from the site-level variable model.

as continuous. Ribes presence was recorded as a categorical variable, with levels defined as
Y es, No, and Undetermined. Aspect was treated as a categorical variable, classified into
quadrants: North, South, East, and West. Forest type was recorded on-site according
to the Mattson/Despain forest cover type key, but was aggregated into the following cate-
gories: Krummholtz/tundra, Lodgepole, Mixed forest, Mix/open, Old successional White-
bark, Pure Whitebark, Young successional Whitebark, and Whitebark/open. Interactions
thought to capture local weather patterns (which drive spore dispersal) were also included,
specifically Slope× Aspect and Elevation× Aspect.

This site-level model seems to show evidence of relationships between site-level variables and
infection rates at sampled sites. However, mapping the residuals from this model (see Figure
5) shows a spatial pattern remains in the residuals (even after accounting for the site-level
variables.)

2.3 Tests for Spatial Autocorrelation

The spatial autocorrelation in the site-level model residuals is evident from the map (Figure
4). It is common, however, to see tests of spatial autocorrelation presented, so the most
common of these were investigated. In order to investigate the presence of spatial autocor-
relation in the residuals, both Moran’s I and Mantel’s test were employed.
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2.3.1 Moran’s I

Moran’s I is a summary measure quantifying autocorrelation. It is defined as I(d) =

( 1
W (d)

)

∑n

(i=1,i 6=j)

∑n

(j=1,j 6=i)
wij(d)(xi−x̄)(xj−x̄)

1
n

√∑n

i=i
(xi−x̄)2

(Fort́ın & Dale 2005), in which each xi is an observed

value at location i, wij(d) represents a “weight” corresponding to a pair of observations i
and j. The weight is typically the inverse or inverse square of the euclidean distance between
observations i and j, and W (d) is the sum of all wij(d) values. Moran’s I can be thought of
as a weighted average of all pairwise correlations in the observed values, with weights defined
by the corresponding euclidean distances between observed values. Moran’s I will have a
value between -1 and 1, with positive values indicating positive spatial autocorrelation and 0
indicating no spatial autocorrelation. The expected value of the Moran’s I can be calculated
as − 1

n−1
under no spatial autocorrelation.

Using Moran’s I with an inverse square distance weight matrix to test for spatial autocor-
relation in the residuals from the site-level model described above, yields I = 0.40. Under
a null hypothesis of no spatial autocorrelation, we can calculate E(I) = −0.00065, and
SD(I) = 0.0185. Using a normal approximation, this leads to a p-value < 0.0001. There-
fore, using Moran’s I, we have conclusive evidence of spatial autocorrelation in the residuals.

2.3.2 Mantel’s Test

Mantel’s test calculates the correlation between the spatial distance matrix and the distance
matrix of the responses (in this case, the residuals), and uses a permutation approach to eval-
uate the evidence of a correlation between the two matrices (Mantel 1967). Mantel’s test was
also employed to test for for spatial autocorrelation in the residuals from the above model.
A Mantel test statistic of r = 0.1502 was calculated, and performing 999 permutations gave
a permutation p-value of 0.001. The upper permutation quantiles for the Mantel statistic
(under the null model of no spatial autocorrelation) were q0.95 = 0.0154, and q0.99 = 0.0220.
Therefore, this test also yields conclusive evidence of spatial autocorrelation in the residu-
als, implying spatial autocorrelation remains, even after accounting for site-level covariates
available.

2.4 Graphical Assessment of Correlation & Covariance

Additional techniques of graphical assessment of the spatial autocorrelation in site-level
model residuals are perhaps more illustrative, and useful for subsequent modeling. Shown in
Figure 6 (left) is a correlogram, which depicts distance on the x-axis and correlation on the
y-axis, for the binned residuals. The autocorrelation coefficient rh for lag h is calculated as
rh = ch

c0
, in which ch is the autocovariance function ch = 1

N

∑N−h
t=1 (yt − ȳ)(yt+h − ȳ) for some

spatial process y, and c0 is the variance function, defined as c0 = 1
N

∑N
t=1(yt − ȳ) (Box &

Jenkins 1976). Function correlog() within package ncf (Bjornstad 2013) calculates these
correlations for binned distances. In this instance, the residuals still show a large amount
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Figure 6: Correlogram (left) and semivariogram (right) calculated from the site-level model
residuals.

of correlation at close distances, with the degree of correlation diminishing as distance in-
creases, with essentially no observed correlation beyond approximately 10 km. Because of
this, only distances less than 20 km are displayed here.

Also shown in Figure 6 (right) is an empirical semivariogram, calculated from the residuals.
Again, the x-axis depicts distance. The y-axis gives an estimate of γ(x, y) = 1

2
var(S(x) −

S(y)) in which S(.) represents the stochastic process as realized at locations x and y. Under
the assumption of stationarity, in which the expectation and variance of the spatial stochastic
process is the same for all locations, and correlation depends only on distance (not direc-
tion), the semivariogram simplifies to γ(u) = σ2(1− ρ(u)) in which u denotes distance, and
ρ(u) denotes the value of a correlation function (the same as that approximated above) for
a given distance (Diggle & Ribeiro 2007).

The estimates of γ(x, y) are calculated as γ̂(h) = 1
2N(h)

Σi,j∈N(h)(zi − zj)
2 for all pairs of

observations (zi, zj) within the set N(h) of pairs of observations within a lag distance h. In
this case, the values of observations used are the site-level model residuals, and bins were
defined in 1 km intervals. Again, this shows a relatively small degree of variability between
close points, with variability increasing as distance increases.
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Figure 7: Correlation function forms considered.

2.5 Modeling Spatial Correlation

With the strong degree of spatial autocorrelation in the site-level model residuals, any anal-
ysis of this dataset should account for this. In order to do so, the form of the spatial
correlation must be estimated. Several forms of correlation functions have been developed
to model correlation (and therefore covariance) as a function of distance between locations
(Diggle & Ribeiro 2007). Shown in Figure 7 are least-squares estimates of the correlation
function for the residuals (as binned above). Shown left are three families of correlation
functions (spherical, powered exponential, and Gaussian) and to the right, three forms of
the Matérn function, with different values of the smoothing parameter κ: κ = 0.5 (also
referred to as the exponential correlation function), κ = 1, and κ = 2. The exponential
correlation function was ultimately selected for modeling, based on a visual assessment of
fit, particularly at close distances.

3 Spatial Prediction

Perhaps what is most useful to Forest managers is a spatial prediction of the blister rust
infection rates for the full study area, that is, the A-B Wilderness and surrounding area. For
this, it is possible to use the spatial covariance modeled above, within some spatial prediction
technique. Presented here are two methods for spatial prediction of infection rates on the
probability scale: a traditional Kriging approach, and a Bayesian method.
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3.1 Introduction to Kriging

Kriging, first developed by Danie Krige (1951) and further refined by Georges Matheron
(1963), was initally intended for mining applications, in order to estimate the spatial distri-
bution of gold deposits based on samples from a few boreholes (Schabenberger & Gotway
2005). Kriging is a spatial prediction technique under the assumption of an underlying mul-
tivariate Gaussian surface, with a spatial covariance structure that must be estimated using
the spatial covariance of the data used, in this case, the model residuals. In order to do
this, the form of the correlation function must be specified, along with the parameters of
the chosen correlation function. Kriging assumes first- and second-order stationarity, that
is, that the expectation and variance of the random spatial process be equal in all locations,
with correlation depending only on distance. Using typical methods, this necessitates the
assumption that no directional effects present (isotropy), however, Kriging methods have
been developed that account for the presence of directional effects (anisotropy).

Three commonly-used forms of Kriging have been developed, each with a different assump-
tion of the expectation of the underlying multivariate Gaussian surface. Simple Kriging
assumes the expectation of the Gaussian surface to be equal to some known value at all
locations. Ordinary Kriging assumes the expectation to be equal at all locations, but allows
the mean to be unknown. Universal Kriging extends this, and uses the assumption that the
mean is equal to some linear function of site-level covariates, i.e.

∑q
j=1 βjdj(xi) (Schaben-

berger & Gotway 2005).

The underlying structure of the model used by Universal Kriging can be expressed in the
form of a generalized geostatistical model, expressed as shown below for location xi, and
employing the logit-link used in this analysis (Diggle & Ribeiro). The set of βj’s repre-
sent a set of regression parameters, with associated values of dj(xi) for each observation of
site-level explanatory variables at location xi (elevation, slope, aspect, etc.) All of these
elements are analagous to the pieces of a classical generalized linear regression model. What
a geostatistical model adds is denoted S(xi), the realization of an assumed zero-mean mul-
tivariate Gaussian stochastic process at location xi. Adding S(xi) is analagous to adding a
random effect with a form of correlation depending on spatial distance between observations.

yi ∼ Bin(mi, πi)

logit(πi) =
∑q

j=1 βjdj(xi) + S(xi)

The
∑q

j=1 βkdj(xi) piece of the geostatistical model (the mean used in Universal Kriging)
can be predicted from the same set of site-level predictors at some new site, using the esti-
mated regression coefficients from a binomial logistic regression model (discussed later). The
spatial component S(xi) can be predicted from the residuals of the same model using Kriging.
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3.2 Regression Kriging using Residuals

Spatial prediction using traditional Kriging methods was performed for the points on a pre-
diction grid, which was drawn at 1km intervals within a minimum convex polygon drawn
from the locations of the sampling sites. For each point on the prediction grid, values of
slope, elevation, and aspect were extracted from a 30m digital elevation model using Ar-
cGIS. Unfortunately, not all measured site-level variables were able to be extracted for each
prediction location. Specifically, forest type and Ribes presence were unavailable.

With the vegetation variables unavailable for the prediction points, it was necessary to for-
mulate a binomial logistic regression model with new covariates, using available information
as a surrogate for unavailable information. Since patterns in vegetation tend to occur in
accordance with site topography, an attempt was made to use the site topography variables
(slope, elevation, and aspect; all covariates in the original model) to account for the missing
vegetation variables. This was done in the hope of being able to account for the variation
in infection rate due to site vegetation variables (forest type, Ribes presence) that would
themselves be driven by varying combinations of site topography. To accomplish this, the
quantitative site topography variables (slope and elevation) were treated as 10-level cate-
gorical variables instead, and interaction between elevation (10 categories) and aspect (still
treated as 4 categories) were included. Treating the topography variables as categorical
rather than continuous is likely a more accurate description of what would influence site
vegetation, which likely responds to discrete combinations of site topography, rather than
linear relationships with either variable.

Prediction of the spatial random effect was done using the geoR package (Ribeiro & Diggle
2001), using the deviance residuals from the topography-variable binomial logistic regres-
sion model, fit separately using glm(). The correlation function used was the exponential
(Matérn with κ = 0.5), with parameters estimated through maximum likelihood estima-
tion from the topography-variable model residuals, using likfit(), a function in in geoR.
Prediction locations outside the ranges of slope and elevation found in sampling sites were
excluded from prediction. The linear model (mean) component and spatial component were
added for each prediction location, and back-transformed to the probability scale, with the
resulting predicted infection probabilities plotted in Figure 8.

Any form of estimation is incomplete without an estimate of uncertainty, which must be
given for all prediction locations. The Kriging algorithm implemented in geoR gives the esti-
mated Kriging variance (Figure 9), which can be thought of as the variability in estimation
of the random surface. The Kriging variance is characterized precisely as we might expect,
with estimated prediction variance increasing as distance increases from a sampling location.

Näıve variance estimates for the prediction at each prediction location were combined by
adding the estimated linear model prediction variance to the estimated Kriging variance,
making a näıve assumption of no covariance. Confidence intervals were then calculated
for each prediction location. Endpoints of approximate 95% confidence intervals were con-
structed using the näıve standard errors (Figure 10).
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Figure 8: Predicted probabilities of infection for a 1-km grid. This prediction grid was
produced by adding the logit-scale predicted values from the topography variables to the
logit-scale predicted values from simple Kriging performed on the topography variable model,
back-transformed to the probability scale.
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Figure 9: Estimated Kriging variance
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Figure 10: Approximate 95% confidence interval for infection probabilities at prediction
locations, from Kriging on residuals.

3.3 A Bayesian Approach for Generalized Linear Geostatistical
Models

Diggle & Ribeiro (2007) developed a Bayesian approach to universal Kriging (that is, Krig-
ing when the mean is defined by a set of site-specific covariates) for non-normal responses,
that is, a GLM setting. This lends the elegance of unifying estimation of spatial covariance
parameters and logistic regression parameters used to predict at new locations, with a non-
normal model for the mean. The benefit to be derived from this approach is the allowance
for uncertainty in estimation of the spatial covariance parameters in prediction, whereas
under the classical Kriging approach, prediction is performed under the assumption that the
estimated spatial covariance parameters are the “truth.” Another benefit to the Bayesian
approach is the relative simplicity of generating posterior intervals for each prediction loca-
tion. Prediction was performed using the geoRglm package (Christiansen & Ribeiro 2002).
Posterior medians and 0.025 & 0.975 quantiles of the posterior distributions at each location
in the prediction grid are provided in Figures 11 and 12.

A look at the plots of the upper and lower quantiles reveals that something strange is happen-
ing at a UTM Northing coordinate of 5,000,000. At this point, I can only offer speculation as
to what might be causing this “break” in the prediction values. However, we must remember
that predictions were made directly from site topography variables, treated as categorical,
and allowing interactions. These site topography variables were themselves derived quanti-
ties, calculated from a digital elevation model. As an example, the derived slopes are plotted
in Figure 13. It’s not as obvious, but I believe the same horizontal line at UTMN = 5,000,000
to be visible.
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Figure 11: Predicted probabilities of infection (posterior medians) for a 1-km grid, made
using Bayesian spatial prediction methods.
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Figure 12: Approximate 95% Posterior interval for infection probabilities at prediction loca-
tions.
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Figure 13: Values of slope extracted from the digital elevation model, again showing a
horizontal line artifact at a UTM Northing coordinate of 5,000,000

To go looking for an assignable cause in this instance is an exercise in pure speculation,
and extreme caution is required. However, it’s within conjecture that what we’re observing
is some form of breakpoint in the source data. Perhaps the elevation model was processed
in multiple batches, and what we’re observing is a slight difference in smoothing. If this
were true, a very slight perturbation in the elevation model could have the effect of larger
perturbations in any derived quantities (even for no other reason than the fact that they are
derived quantities), particularly at the edge. Then, any complex analysis using those derived
quantities would potentially be even more subject to those perturbations, and exacerbated
by the inclusion of interactions. Future work may include further investigation of this with
graphical techniques.

4 Discussion

Any inference drawn from this analysis should be made with some caution. Any form of
prediction to new sites is a form of inference to a larger population. Since sampling was not
random, we must make the assumption that the sampling locations were representative of
whitebark pine stands in the study area, and not subject to bias. If there were any rela-
tionship between infection rates and site characteristics related in some way to accessibility,
there is certainly the potential for bias. In addition, since sampling sites were selected by
field technicians, it’s certainly within conjecture that well-meaning technicians may have
selected so as to include areas of infection. This is unlikely, due to the relative difficulty of
seeing infection at a distance, but the potential does exist.
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Another serious limitation to this study is the potential confounding of space with time.
Even though the spread of blister rust is a relatively slow process, the data collection phase
lasted sixteen years, potentially enough for infection rates to increase appreciably. Sampling
in any given field season was widespread across the study area, but a number of sampling
site “clusters” over space were also clustered in time, particularly in areas where access was
difficult (e.g. one trip was made to sample Saderbalm Basin, in the fall of 2008). This
could potentially cause problems in two ways: first, any spatial analysis considered here only
accounts for spatial distance between sampling sites, not temporal. It is thus potentially
problematic to treat the sampling of a region in the early years of the data collection as
equivalent to sampling in the later years of the study. In addition, since spatial prediction
was performed using data from the past decades, caution should perhaps be advised in in-
ferring these results to the present day or the future.

In addition, the spatial prediction methodology used in this paper was subject to the assump-
tion of isotropy, which might be inappropriate to assume. Since blister rust spore dispersal
occurs atmospherically, any prevailing weather patterns might make blister rust infection in
sites directly downwind from one another have higher degrees of correlation than for sites
oriented perpendicular to weather patterns.

5 Graphical functions developed for this analysis

This analysis necessitated plotting of spatial point-referenced data with an additional (z)
component - observed or predicted infection rates. For intuitive simplicity, this was ex-
pressed using a color gradient. However, graphical methods for expressing raster (grid) data
typical of a GIS environment - that is, with an incomplete grid - were not easily obtained.
Because of this and some additional functionality desired and the format of the results, cus-
tom functions were developed and made adaptable for other, similar analyses.

The rasterblaster function displays raster data as a colored grid, and simply requires a
vector of (x,y) coordinates for the grid cell midpoints and a corresponding vector of quanti-
tative data. It automatically detects the grid scale and computes a color ramp according to
a user-specified type, and adds the options of a legend and scale bar. The dotsplot function
displays point data, again with the input of (x,y) coordinates and a vector of quantitative
data, also computing a color ramp and adding mapping elements such as a legend and scale
bar.

With the relative simplicity of use of these functions for mapping spatial data, these func-
tions and others will be published as the rasterblaster package, for the benefit of others
performing similar analyses.
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8 Appendix - R Code Used

# Loading data

setwd("~/Matt/classes/Writing_project")

load("Project_Data_4_5.Rdata")

# Functions that will be used

logit <- function(x) log(x/(1-x))

expit <- function(x) (exp(x))/(1+exp(x))

rasterblaster.bw <- function(coords,z,x=coords[,1],y=coords[,2],zmin=min(z,na.rm=T)

,zmax=max(z,na.rm=T)){
xdistmat <- dist(x)

xdistmat[xdistmat==0] <- max(xdistmat)

xside <- min(xdistmat)

#print(xside)

ydistmat <- dist(y)

ydistmat[ydistmat==0] <- max(ydistmat)

yside <- min(ydistmat)

#print(yside)

plot(x,y,col="white",asp=1)

for(i in 1:length(z)){
if(is.na(z[i])==F){

polygon(c(x[i]-xside/2,x[i]+xside/2,x[i]+xside/2,x[i]-xside/2),

c(y[i]-yside/2,y[i]-yside/2,y[i]+yside/2,y[i]+yside/2),

col=gray((z[i]-zmin)/(zmax-zmin)),border=NA)

}
}

}
rasterblaster <- function(coords,z,x=coords[,1],y=coords[,2],invert=F,scale=F,

scale.mult=1,scale.units="",scale.dist=10000,main="",

xlab="",ylab="",legend=T,leg.round=2,add=F){
xdistmat <- dist(x)

xdistmat[xdistmat==0] <- max(xdistmat)

xside <- min(xdistmat)

#print(xside)

ydistmat <- dist(y)

ydistmat[ydistmat==0] <- max(ydistmat)

yside <- min(ydistmat)

#print(yside)

if(add==F) plot(x,y,col="white",asp=1,main=main,xlab=xlab,ylab=ylab)

cols<-rainbow(length(z),start=0,end=0.8)

zrank<-rank(z,na.last=T)

if(invert==TRUE) {
cols1<-rep(NA,length(z))

for(i in 1:length(z)) {
cols1[i] <- cols[length(z)-i+1]

}
cols<-cols1

}
for(i in 1:length(z)){
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if(is.na(z[i])==F){
#polygon(c(x[i]-xside/2,x[i]+xside/2,x[i]+xside/2,x[i]-xside/2),

# c(y[i]-yside/2,y[i]-yside/2,y[i]+yside/2,y[i]+yside/2),

# col=cols[zrank[i]],border=NA)

rect(x[i]-xside/2,y[i]-yside/2,x[i]+xside/2,y[i]+yside/2,col=cols[zrank[i]],

border=NA)

}
}
if(legend==T) {
for(i in 1:10) {

polygon(c(min(x)-xside/2,min(x)+xside/2,min(x)+xside/2,min(x)-xside/2),

c(max(y)-i*yside-yside/2,max(y)-i*yside-yside/2,max(y)-i*yside+yside/2,

max(y)-i*yside+yside/2),col=cols[floor((10-i)/10*length(z))+1],

border=NA)

if(is.na(z[zrank==floor((10-i)/10*length(z))+1])==F){#floor(i/2)!=i/2 &

text(x=min(x)+(floor(i/2)==i/2)*7*yside,y=max(y)-i*yside,

round(z[zrank==floor((10-i)/10*length(z))+1],leg.round),pos=4,cex=.5)

}
}

}
if(scale==T) {
lines(c(min(x),min(x)+2*scale.dist),rep(min(y),2))

lines(rep(min(x),2),min(y)+c(-1000,1000))

lines(rep(min(x)+scale.dist,2),min(y)+c(-1000,1000))

lines(rep(min(x)+2*scale.dist,2),min(y)+c(-1000,1000))

text(x=min(x)+scale.dist,y=min(y),scale.dist*scale.mult,pos=3,cex=.5)

text(x=min(x)+2*scale.dist,y=min(y),2*scale.dist*scale.mult,pos=3,cex=.5)

text(x=min(x)+2.5*scale.dist,y=min(y),scale.units,pos=3,cex=.5)

}
}
dotsplot <- function(x,y,z,main="",xlab="",ylab="",colramp="rainbow",invert=FALSE,

scale=F,scale.dist=10000,legend=T,add=F) {
if(add==F) plot(x,y,col="white",asp=1,main=main,xlab=xlab,ylab=ylab)

if(colramp=="rainbow") cols<-rainbow(length(z),start=0,end=0.75)

if(colramp=="terrain") cols<-terrain.colors(length(z))

if(colramp=="topo") cols<-topo.colors(length(z))

if(invert==TRUE) {
cols1<-rep(NA,length(z))

for(i in 1:length(z)) {
cols1[i] <- cols[length(z)-i+1]

}
cols<-cols1

}
zrank<-rank(z,na.last=T,ties.method="min")

for(i in 1:length(z)) {
points(x[i],y[i],pch=20,col=cols[zrank[i]])

}
if(legend==T) {
for(i in 1:10) {
points(min(x)-200,max(y)-1000*i,pch=20,col=cols[floor((10-i)/10*length(z))+1])

#if(is.na(z[zrank==floor((10-i)/10*length(z))+1])==F){#floor(i/2)!=i/2 &

# text(x=min(x)+(floor(i/2)==i/2)*7000,y=max(y)-i*1000,

#round(z[zrank==floor((10-i)/10*length(z))+1],2),pos=4,cex=.5)
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#}
}
text(min(x)-200,max(y)-1000,round(max(z),2),pos=4,cex=.5)

text(min(x)-200,max(y)-10000,round(min(z),2),pos=4,cex=.5)

}
if(scale==T) {
lines(c(min(x),min(x)+2*scale.dist),rep(min(y),2))

lines(rep(min(x),2),min(y)+c(-1000,1000))

lines(rep(min(x)+scale.dist,2),min(y)+c(-1000,1000))

lines(rep(min(x)+2*scale.dist,2),min(y)+c(-1000,1000))

text(x=min(x)+scale.dist,y=min(y),"10 km",pos=3,cex=.5)

text(x=min(x)+2*scale.dist,y=min(y),"20 km",pos=3,cex=.5)

}
}

library(ncf)

corr.bin<-correlog(x=site.data$UTM.E,y=site.data$UTM.N,z=resids,

increment=1000,resamp=1)

#plot(corr.bin)

plot(corr.bin$mean.of.class[1:20],corr.bin$correlation[1:20],xlab="distance (m)",

ylab="correlation",main="Correlogram - Deviance Residuals",type="b")

#lines(corr.bin$mean.of.class[1:100],corr.bin$correlation[1:100])

abline(h=0)

library(ade4)

library(ape)

dists<-as.matrix(dist(cbind(site.data$UTM.N, site.data$UTM.E)))

dists.inv <- 1/dists

diag(dists.inv) <- 0

dists.inv[is.infinite(dists.inv)] <- 0

dists.inv2 <- dists.inv^2

gearymoran(dists.inv,resids)

Moran.I(resids,dists.inv2)

v1.expon<-variofit(v1)

lines(v1.expon)

# prediction using GLM residuals...

site.coords <- data.frame(site.data$UTM.N,site.data$UTM.E)

set.seed(1)

site.coords.j <- data.frame((site.data$UTM.N+runif(1550,-20,20)),

(site.data$UTM.E+runif(1550,-20,20)))

inf.rate <- site.data$prop.all

length(inf.rate[inf.rate==0])/length(inf.rate)

logit.inf <- log((inf.rate+.02)/(1-(inf.rate+.02)))

hist(inf.rate)

hist(logit.inf)

gridpts <- read.csv("gridpts_elev_aspect_slope.csv",head=T)

names(gridpts)

num.cat <- 10

elev.cat <- rep(NA,1550)

elev.q<- quantile(site.data$elev_km,seq(0,1,by=(1/num.cat)))

for(i in 1:num.cat) {
elev.cat[(site.data$elev_km<elev.q[i+1])&(site.data$elev_km>=elev.q[i])] <- i

}
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elev.cat[894] <- num.cat

plot(elev.cat,site.data$elev_km)

num.cat <- 10

slope.cat <- rep(NA,1550)

slope.q<- quantile(site.data$Slope.deg,seq(0,1,by=(1/num.cat)))

for(i in 1:num.cat) {
slope.cat[(site.data$Slope.deg<slope.q[i+1])&(site.data$Slope.deg>=slope.q[i])] <- i

}
slope.cat[1463] <- num.cat

plot(slope.cat,site.data$Slope.deg)

site.data$slope.cat <- slope.cat

site.data$elev.cat <- elev.cat

library(geoR)

library(geoRglm)

# setting up the prediction grid points

gr.elev.cat <- rep(NA,5959)

gr.slope.cat <- rep(NA,5959)

num.cat<-10

gridpts$elev_km <- gridpts$elev_m/1000

for(i in 1:num.cat) {
gr.elev.cat[(gridpts$elev_km<elev.q[i+1])&(gridpts$elev_km>=elev.q[i])] <- i

}
plot(gr.elev.cat,gridpts$elev_km)

for(i in 1:num.cat) {
gr.slope.cat[(gridpts$slope<slope.q[i+1])&(gridpts$slope>=slope.q[i])] <- i

}
plot(gr.slope.cat,gridpts$slope)

gr.NSEW <- rep(NA,5959)

gr.NSEW <- as.character(ifelse((gridpts$aspect<45|gridpts$aspect>=315),"N",

ifelse((gridpts$aspect<135&gridpts$aspect>=45),"E",

ifelse((gridpts$aspect<225&gridpts$aspect>=135),

"S",ifelse((gridpts$aspect<315&

gridpts$aspect>=225),"W",0)))))

gr.NSEW[gridpts$slope==0] <- 0

gr.NSEW <- as.factor(gr.NSEW)

#slope.cat[is.na(slope.cat)==T] <- -1

#elev.cat[is.na(elev.cat)==T] <- -1

#gr.slope.cat[is.na(gr.slope.cat)==T] <- -1

#gr.slope.cat[17] <- -1

#gr.elev.cat[is.na(gr.elev.cat)==T] <- -1

slope.cat <- as.factor(slope.cat)

elev.cat <- as.factor(elev.cat)

gr.slope.cat <- as.factor(gr.slope.cat)

gr.elev.cat <- as.factor(gr.elev.cat)

gridpts$slope.cat<-gr.slope.cat

gridpts$elev.cat<-gr.elev.cat

gridpts$NSEW<-gr.NSEW

#inserting the new model residuals, i hope it works

mod.cat<-glm(cbind(subset.blist,subset.noblist)~

factor(slope.cat)+factor(elev.cat)*NSEW,data=site.data,family=binomial(link="logit"))

#hist(mod.cat$residuals)

site.resids <- data.frame(site.coords.j,(resid(mod.cat,type="deviance")))

#predicting the deterministic part
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hist(logit(mod.cat$fitted))

#hist(fitted(mod.cat,type="link"))

grid.determ <- predict.glm(mod.cat,newdata=gridpts.c,se.fit=T)

hist(grid.determ$fit)

hist(grid.determ$se.fit)

#site.resids <- data.frame(site.coords.j,mod10$residuals)

names(site.resids) <- c("N","E","resid")

site.resids <- as.geodata(site.resids,coords.col=2:1,data.col=3)

plot(variog(site.resids),type = "b")

ml <- likfit(site.resids, ini=c(5, 3000), nug=0)

# likfit: estimated model parameters:

# beta tausq sigmasq phi

# " 0.4845" " 1.2083" " 1.6398" "5035.5085"

# " 0.4835" " 1.2077" " 1.6342" "5000.0000"

# " 0.4846" " 1.2083" " 1.6398" "5035.7233"

# Practical Range with cor=0.05 for asymptotic range: 15085.04

# likfit: maximised log-likelihood = -2621

# likfit: maximised log-likelihood = -2621

# likfit: maximised log-likelihood = -2621

## performing the spatial prediction

grid.loc <- as.matrix(cbind(gridpts$Var1,gridpts$Var2))

KC <- krige.control(type="sk", obj.mod=ml)

kr <- krige.conv(site.resids, loc=grid.loc, krige=KC)

kr.c <- krige.conv(site.resids, loc=grid.loc.c, krige=KC)

#borders=cbind(ab.poly.pts$site.data.UTM.E,ab.poly.pts$site.data.UTM.N),

str(kr)

hist(kr$predict)

hist(sqrt(kr$krige.var))

plot(site.resids)

plot(grid.loc,col="white")

points(grid.loc,col=gray((kr$predict-min(kr$predict))/

(range(kr$predict)[2]-range(kr$predict)[1])))

grid.pred <- grid.determ$fit + kr.c$predict

hist(grid.pred)

grid.err <- sqrt(kr.c$krige.var+(grid.determ$se.fit^2))

hist(grid.err)

plot(site.resids)

lo.pred.1se <- grid.pred-grid.err

hi.pred.1se <- grid.pred+grid.err

lo.pred.95 <- grid.pred-2*grid.err

hi.pred.95 <- grid.pred+2*grid.err

hist(lo.pred.95)

hist(hi.pred.95)

hist(expit(lo.pred.95))

hist(expit(hi.pred.95))

hist(lo.pred.1se)

hist(hi.pred.1se)

hist(expit(lo.pred.1se))

hist(expit(hi.pred.1se))

p.grid.pred <- expit(grid.pred)

p.lo.pred.1se <- expit(lo.pred.1se)

p.hi.pred.1se <- expit(hi.pred.1se)

#The Bayesian Version
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grid.loc <- as.matrix(cbind(gridpts$Var1,gridpts$Var2))

site.binom <- data.frame(site.coords.j,site.data$subset.blist,site.data$subset)

names(site.binom) <- c("N","E","blist","all")

site.binom <- as.geodata(site.binom,coords.col=2:1,data.col=3)

site.binom$units.m <- site.data$subset

#try a subset

sub.poly<-cbind(c(600000,620000,620000,600000),c(5010000,5010000,4990000,4990000))

site.binom.sub <- subarea(site.binom,xlim=c(600000,620000),ylim=c(4990000,5010000))

grid.loc.sub <- polygrid(grid.loc, bor=sub.poly)

grid.loc.subsub <- grid.loc.sub[c(123,135),]

plot(grid.loc.sub)

points(grid.loc.subsub,pch=2)

points(site.binom.sub,add=T)

MCb <- mcmc.control(n.iter=10000,S.scale=.2,phi.scale=.6,burn.in=1000)

OCb <- output.glm.control(sim.predict=T)

PCb <- prior.glm.control(phi.prior="uniform",sigmasq.prior="uniform",

phi.discrete=seq(4000,6000,50))

set.seed(268)

kr.b <- binom.krige.bayes(site.binom.sub, loc=grid.loc.sub, mcmc = MCb,prior = PCb)

#convergence

par(mfrow=c(2,2))

plot(kr.b$posterior$phi$sample,type="l")

acf(kr.b$posterior$phi$sample)

plot(kr.b$posterior$sim[1,],type="l")

acf(kr.b$posterior$sim[1,])

par(mfrow=c(1,1))

hist(kr.b$predictive$median)

str(kr.b)

hist(kr.b$predictive$simulations[300,])

grid.medians <- rep(NA,dim(grid.loc.sub)[1])

for(i in 1:dim(grid.loc.sub)[1]) {
grid.medians[i] <- median(kr.b$predictive$simulations[i,])

}
hist(grid.medians)

rasterblaster.col(grid.loc.sub,grid.medians)

points(site.binom.sub$coords,pch='+')

rasterblaster.col(grid.loc.sub,kr.b$predictive$median)

points(site.binom.sub$coords,pch='+')

hist(kr.b$posterior$simulations[70,])

abline(v=site.binom.sub$data[70]/site.binom.sub$units.m[70])

#try the whole thing

plot(grid.loc)

points(site.binom,col=2,add=T)

MCb <- mcmc.control(n.iter=1000,S.scale=.01,phi.scale=.6,burn.in=1000)

OCb <- output.glm.control(sim.predict=T)

PCb <- prior.glm.control(phi.prior="fixed",sigmasq.prior="uniform",phi=5000)

set.seed(268)

kr.b.full <- binom.krige.bayes(site.binom, loc=grid.loc, mcmc = MCb,prior = PCb)

rasterblaster.col(grid.loc,kr.b.full$predictive$median)

rasterblaster.col(grid.loc,kr.b.full$predictive$quantiles$q0.025)

rasterblaster.col(grid.loc,kr.b.full$predictive$quantiles$q0.975)

rasterblaster.col(grid.loc,kr.b.full$predictive$uncertainty)

points(site.binom$coords,pch='+')
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rasterblaster(grid.loc,kr.b.full$predictive$median)

#try the whole thing plus predictors

gridpts.c <- na.omit(gridpts)

grid.loc.c <- as.matrix(cbind(gridpts.c$Var1,gridpts.c$Var2))

plot(grid.loc.c)

points(site.binom,col=2,add=T)

MCb <- mcmc.control(n.iter=1000,S.scale=.005,phi.scale=.6,burn.in=1000)

OCb <- output.glm.control(sim.predict=F)

PCb <- prior.glm.control(phi.prior="fixed",sigmasq.prior="uniform",phi=5000)

ModCb <- model.glm.control(trend.d= ~factor(site.data$slope.cat)+

factor(site.data$elev.cat)*factor(site.data$NSEW),

trend.l= ~factor(gridpts.c$slope.cat)+

factor(gridpts.c$elev.cat)*factor(gridpts.c$NSEW))

set.seed(268)

kr.b.full.c <- binom.krige.bayes(site.binom, loc=grid.loc.c, mcmc = MCb,

prior = PCb,model=ModCb,output=OCb)

#try it again

set.seed(149)

kr.b.full.c1 <- binom.krige.bayes(site.binom, loc=grid.loc.c, mcmc = MCb,

prior = PCb,model=ModCb,output=OCb)

rasterblaster.col(grid.loc.c,kr.b.full.c$predictive$median,invert=T)

rasterblaster.col(grid.loc.c,kr.b.full.c$predictive$quantiles$q0.025)

rasterblaster.col(grid.loc.c,kr.b.full.c$predictive$quantiles$q0.975)

rasterblaster.col(grid.loc.c,kr.b.full.c$predictive$uncertainty)

points(site.binom$coords,pch='+')

plot(site.data$UTM.E,site.data$UTM.N,col="white",xlab="UTM E",ylab="UTM N",

main="1995-1997")

for(i in 1995:1997) {
points(site.data$UTM.E[site.data$Year==i],site.data$UTM.N[site.data$Year==i])

}
plot(site.data$UTM.E,site.data$UTM.N,col="white",xlab="UTM E",ylab="UTM N",

main="1998-1999")

for(i in 1998:1999) {
points(site.data$UTM.E[site.data$Year==i],site.data$UTM.N[site.data$Year==i])

}
plot(site.data$UTM.E,site.data$UTM.N,col="white",xlab="UTM E",ylab="UTM N",

main="2000-2002")

for(i in 2000:2002) {
points(site.data$UTM.E[site.data$Year==i],site.data$UTM.N[site.data$Year==i])

}
plot(site.data$UTM.E,site.data$UTM.N,col="white",xlab="UTM E",ylab="UTM N",

main="2003-2004")

for(i in 2003:2004) {
points(site.data$UTM.E[site.data$Year==i],site.data$UTM.N[site.data$Year==i])

}
plot(site.data$UTM.E,site.data$UTM.N,col="white",xlab="UTM E",ylab="UTM N",

main="2005-2007")

for(i in 2005:2007) {
points(site.data$UTM.E[site.data$Year==i],site.data$UTM.N[site.data$Year==i])

}
plot(site.data$UTM.E,site.data$UTM.N,col="white",xlab="UTM E",ylab="UTM N",
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main="2008-2010")

for(i in 2008:2010) {
points(site.data$UTM.E[site.data$Year==i],site.data$UTM.N[site.data$Year==i])

}

dotsplot(site.data$UTM.E,site.data$UTM.N,site.data$prop.all,

main="Raw Infection Rates",invert=T,scale=T)

#dotsplot(site.data$UTM.E,site.data$UTM.N,resid(mod.cat,type="deviance"),

#main="Deviance Residuals from Top Model",invert=T,scale=T)

mod1 <- glm(prop.all~Ribies+Cov_class_1+NSEW+elev_km+year_c+Slope.deg.,

data=site.data,family=binomial(link="logit"),weights=subset)

mod1a <- glm(prop.all~Ribies+Cov_class_1+NSEW*elev_km+year_c+NSEW*Slope.deg.,

data=site.data,family=binomial(link="logit"),weights=subset)

dotsplot(site.data$UTM.E,site.data$UTM.N,resid(mod1a,type="deviance"),

main="Deviance Residuals",invert=T,scale=T)

resids<-resid(mod1a,type="deviance")

#resids<-resid(mod.cat,type="deviance")

library(ade4)

library(ape)

library(vegan)

#library(spdep)

dists<-as.matrix(dist(cbind(site.data$UTM.N, site.data$UTM.E)))

dists.inv <- 1/dists

diag(dists.inv) <- 0

dists.inv[is.infinite(dists.inv)] <- 0

dists.inv2 <- dists.inv^2

Moran.I(resids,dists.inv2)

#geary.test(resids,dists.inv2)

gearymoran(dists.inv2,resids)

resid.dist<-dist(resids)

mantel(resid.dist,dists,permutations=999)

plot(corr.bin$mean.of.class[1:21],corr.bin$correlation[1:21],xlab="distance (m)",

ylab="correlation",main="Correlogram - Deviance Residuals")

abline(h=0,lty=2)

#library(nlme)

library(geoR)

#glsfit<-gls(resids~1)

#plot(Variogram(glsfit,form=~site.data$UTM.E+site.data$UTM.N,max=20000))

#plot(Variogram(object=resids,distance=dists,max=20000))

breaks = seq(0, 20000, l = 21)

v1 <- variog(coords=site.binom$coords,data=resids, breaks = breaks)

plot(v1,main="Semivariogram - Deviance Residuals")
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plot(v1,main="Semivariogram - Deviance Residuals")

v1.spher <- variofit(v1,cov.model="spherical")

lines(v1.spher,lty=6)

# parameter estimates:

# tausq sigmasq phi

# 3.5088 3.7335 18464.6988

# Practical Range with cor=0.05 for asymptotic range: 18464.7

v1.pow.exp <- variofit(v1,cov.model="powered.exponential")

lines(v1.pow.exp,lty=7)

#parameter estimates:

# tausq sigmasq phi

# 2.5345 35.6044 864702.6670

#Practical Range with cor=0.05 for asymptotic range: 7760198

v1.gauss <- variofit(v1,cov.model="gaussian")

lines(v1.gauss,lty=2)

#parameter estimates:

# tausq sigmasq phi

# 4.1253 3.2673 9865.6747

#Practical Range with cor=0.05 for asymptotic range: 17075.69

legend(5000,2,legend=c("Spherical","Powered Exponential","Gaussian"),lty=c(6,7,2))

plot(v1,main="Semivariogram - Deviance Residuals")

v1.expon <- variofit(v1,cov.model="exponential")

lines(v1.expon)

#parameter estimates:

# tausq sigmasq phi

# 3.4662 5.3155 13979.6978

#Practical Range with cor=0.05 for asymptotic range: 41879.43

v1.matern1 <- variofit(v1,cov.model="matern",kappa=1)

lines(v1.matern1,lty=3)

#parameter estimates:

# tausq sigmasq phi

# 3.8585 4.1806 7015.1962

#Practical Range with cor=0.05 for asymptotic range: 28050.42

v1.matern2 <- variofit(v1,cov.model="matern",kappa=2)

lines(v1.matern2,lty=5)

#parameter estimates:

# tausq sigmasq phi

# 4.0233 3.6987 4210.0323

#Practical Range with cor=0.05 for asymptotic range: 22601.03

legend(5000,2,legend=c("Matern, k=0.5","Matern, k=1","Matern, k=2"),lty=c(1,3,5))

library(nlme)

set.seed(1)

site.data$UTM.N.j<-site.data$UTM.N+runif(1550,-20,20)

site.data$UTM.E.j<-site.data$UTM.E+runif(1550,-20,20)

gls.mod<-gls(logit(prop.all)~Ribies+Cov_class_1+NSEW+elev_km+year_c+Slope.deg.,

data=site.data,corr=corSpher(form=~UTM.E.j+UTM.N.j))

lo.pred.50 <- grid.pred-0.675*grid.err

hi.pred.50 <- grid.pred+0.675*grid.err

lo.pred.95 <- grid.pred-2*grid.err
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hi.pred.95 <- grid.pred+2*grid.err

rasterblaster(grid.loc.c,expit(grid.pred),invert=T,scale=T,scale.units="km",

scale.mult=0.001,main="Predicted Probabilities of Infection")

rasterblaster(grid.loc.c,kr.c$krige.var,invert=T,scale=T,scale.units="km",

scale.mult=0.001,main="Kriging Variance")

points(site.data$UTM.E,site.data$UTM.N)

#rasterblaster(grid.loc.c,expit(lo.pred.50),invert=T,scale=T,

#main="Predicted Probabilities of Infection - lower 50% interval")

#rasterblaster(grid.loc.c,expit(hi.pred.50),invert=T,scale=T,

#main="Predicted Probabilities of Infection - upper 50% interval")

rasterblaster(grid.loc.c,expit(lo.pred.95),invert=T,scale=T,main="Predicted

Probabilities of Infection - lower 95% interval",leg.round=4)

rasterblaster(grid.loc.c,expit(hi.pred.95),invert=T,scale=T,main="Predicted

Probabilities of Infection - upper 95% interval",leg.round=4)

rasterblaster(grid.loc.c,kr.b.full.c$predictive$median,invert=T,scale=T,

main="Predicted Probabilities of Infection")

rasterblaster(grid.loc.c,kr.b.full.c$predictive$quantiles$q0.025,invert=T,scale=T,main

="Predicted Probabilities of Infection - lower 95% interval",leg.round=6)

rasterblaster(grid.loc.c,kr.b.full.c$predictive$quantiles$q0.975,invert=T,scale=T,main

="Predicted Probabilities of Infection - upper 95% interval",leg.round=4)

rasterblaster(grid.loc.c,as.numeric(gridpts.c$slope.cat),legend=F,

main="Slopes Extracted from DEM",invert=T)
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