
Bayesian Networks

Matthew Pettigrew

Department of Mathematical Sciences

Montana State University

May 5, 2016

A writing project submitted in partial fulfillment
of the requirements for the degree

Master of Science in Statistics

APPROVAL

of a writing project submitted by

Matthew Pettigrew

This writing project has been read by the writing project adviser and has been found
to be satisfactory regarding content, English usage, format, citations, bibliographic
style, and consistency, and is ready for submission to the Statistics Faculty.

Date John Borkowski
Writing Project Adviser

Date Mark Greenwood
Writing Projects Coordinator

BN 1

1 Introduction

With the advent of computers and big data, cutting edge statistical modeling and
methods are developing to take advantage of the additional computational power,
dive into the abundance of information, and answer questions about our world from
more complex perspectives while potentially accounting for more latent information
and dependencies. While these new methods and technology have challenged our
epistemological ideas of causality, objectivity, and evidence, such philosophical
arguments are not the focus of this paper. Instead, this paper will explore one
upcoming method, Bayesian Networking, and it’s use. I will explore it’s general
underlying theoretical framework while providing the reader with a clear picture of
how a Bayesian network works.

1.1 What is a Bayesian Network

“A Bayesian network is a graphical structure that allows us to represent and reason
about an uncertain domain. The nodes in a Bayesian network represent a set of
random variables from the domain. A set of directed arcs connect pairs of nodes,
representing the direct dependencies between variables.” (Korb & Nicholson, 2011)

The definition provided by Korb and Nicholson captures the essence of Bayesian
Networks. A Bayesian Network is a statistical modeling technique utilizing a graphical
structure comprised of nodes and directed arcs to visualize the model. Each node of
the graph represents a random variable from our data or created from our data.
Each random variable is composed of a set of observations corresponding to cases
from the original data set. Dependencies between random variables are directly
represented by directed arcs, arrows, that indicate the direction of the dependency.
Each random variable can be directly dependent on multiple random variables or have
multiple random variables be dependent on it. The variables that a random variable
is dependent on are its parents, while variables that are dependent on a given random
variable are its children.

In contrast, the general linear modeling framework requires one variable, the
response, to be dependent on a set of explanatory variables. While in certain
situations the application of linear modeling is quite adequate, the modeling
structure of Bayesian networks allows for more flexibility by accounting for multiple
dependencies. There can be multiple response variables that share some or no parent
predictors. A given random variable can be both a response and an explanatory
variable within the same model. Bayesian Networking allows for modeling and testing
the inherent dependencies within the network.

A Bayesian network utilizes the full joint probability distribution of a set of
random variables and conditional factorization exploiting the direct dependencies
and the Markov Property. This means that the full joint probability distribution
is factored into a set of conditionally independent local distributions. Each local
distribution consists of the probability distribution of a random variable conditional
on its parents. This factorization allows for localization of calculations. Additionally,
the localization allows for the model to incorporate information from cases with

BN 2

missing data and make predictions, referred to as belief updating, with partial data.

1.2 Graphical and Probabilistic Representation

The graphical and probabilistic representation of a Bayesian network are possible due
to the Markov Property, which allows the graphical model to be seamlessly mapped
to the conditional factorization of the full joint distribution. Korb and Nicholson
describe the Markov property as such: “there are no direct dependencies in the system
begin modeled which are not already explicitly shown via arcs” (Korb & Nicholson,
2011). In essence this states that the probabilistic representation of the model should
reflect the dependencies of the graphical representation via the arcs. Scutari and Denis
(2014) also provide a formal definition in terms of conditional independencies: “Each
node Xi is conditionally independent of its non-descendants (e.g. nodes Xj for which
there is no path from Xi to Xj) given its parents”. Likewise, this definition states
that the probabilistic representation should reflect the conditional independencies of
the graphical representation. If either condition is violated then the Markov Property
is not met.

The Markov property is best illustrated by example. Figure 1 represents an
example of a generic Bayesian Network comprised of the random variables ’A’ through
’F’ that could be modeled by their joint probability distribution P (A,B,C,D,E, F).
The joint distribution is conditionally factored so that each variable is conditionally
dependent on its parents. The root nodes, A and B, have no parents and are
represented as their respective marginal distributions P(A) and P(B). Node C has two
parents, A and B, and thus its probabilistic conditional factorization is P (C|A,B).
Node E has one parent, C, and its conditional probability distribution is P (E|C).
However, Node E is also dependent on A and B as there is a directed path from
A to E and likewise from B to E. These directed paths pass through C, E’s only
direct dependency. Thus, Node E is dependent on A and B only through C. After
conditioning E on C, A and B no longer provide information to E. This is the Markov
Property in action. Conditioning D on C results in a similar scenario to conditioning
E on C. Finally, conditioning F on D and E will result in F being conditionally
independent from C, B, and A, which will no longer be able to pass information to
F.

BN 3

A B

C

D E

F
Figure 1: P (A,B,C,D,E, F) = P (A)P (B)P (C|A,B)P (D|C)P (E|C)P (F |D,E)

1.3 ALARM Example

Let’s examine a quick motivating example to find out what a Bayesian Network can
do. The ALARM monitoring system is a Bayesian Network created by Beinlich,
Suermondt, Chavez & Cooper (1989), that“is often used as a benchmark in the BN
literature” (Korb & Nicholson, 2011).“The goal of the ALARM monitoring system
is to provide specific text messages advising the user of possible problems” and ”is a
data-driven system. Simulating an anesthesia monitor.”

The system consists of three types of variables denoted diagnoses, measurements,
and intermediate variables. The measurements are physiological measurements, such
as heart rate and blood pressure, measured from a patient currently undergoing
surgery. The intermediate variables are variables that cannot be directly observed
but can be easily calculated from the physiological measurements, such as the ratio
of HR/BP. The diagnoses are diseases or potential issues with the patient receiving
the proper amount of anesthesia. The entire network, shown below, consists of
47 variables (8 diagnoses and 16 measurements). The Bayesian network uses the
data from the physiological measurements and estimates the probability of each
diagnosis given the conditional distribution estimated from the data. If the estimated
probability of a diagnosis crosses an upper threshold, the system triggers an ALARM
alerting the anesthesiologist of the problem and the possible causes along with the
associated probabilities. The anesthesiologist can then take action and remedy the

BN 4

situation before harm is inflicted on the patient.

HISTORY

CVPPCWP

HYPOVOLEMIA

LVEDVOLUME

LVFAILURE

STROKEVOLUME ERRLOWOUTPUT

HRBP HREKG

ERRCAUTER

HRSAT

INSUFFANESTH

ANAPHYLAXIS

TPR EXPCO2

KINKEDTUBE

MINVOLFIO2

PVSAT

SAO2

PAP

PULMEMBOLUS

SHUNT

INTUBATION

PRESS

DISCONNECT

MINVOLSET

VENTMACH

VENTTUBE

VENTLUNG

VENTALV

ARTCO2

CATECHOL

HR

CO

BP

Figure 2: The ALARM Bayesian Network (Beinlich, 1989)(Scutari, 2015)

2 Graph Theory

Before looking more deeply into Bayesian networks, we need to look at the basic
underlying graph theory. The graphical representation of the model is a key visual

BN 5

tool to understand how assumptions, estimates, and calculations filter through the
network. The introduction provided two key ideas: nodes and directed arcs. Nodes
represent random variables, while directed arcs, which connect two nodes, model
direct dependencies. A directed arc connects a parent to a child. Undirected arcs can
also connect two nodes and are illustrated as a line segment between the two nodes.
Certain algorithms utilize undirected arcs or represent uncertainty in the direction of
a dependency by not directing an arc. Bayesian networks, however, must consist of
only directed arcs.

2.1 Directed Acyclic Graphs

The graphical structure of a Bayesian network must be a Directed Acyclic Graph
(DAG). A DAG consists of nodes connected only using directed arcs. Additionally the
graph must be acyclic, that is, the graph cannot contain any loops. A graphical loop
would indicate a cycle of dependencies among a subset of variables in the model (see
Figure 3(b)). More specifically, the conditional factorization of the joint distribution
would no longer be valid for the inherent conditional probabilities. If including a
dependency which creates a cycle is necessary, another modeling technique should be
used. Including the arc violates our conditional factorization, while not including the
arc would violate our Markov Property. As such the underlying graphical structure
of Bayesian Networks are strictly limited to DAGs.

(a) Acyclic

Ancestor

A

Descendent

(b) Cyclic

Ancestor

A

Descendent

X

Figure 3: (a): A simple DAG as all directed paths go from ancestor to descendent.
(b): Adding a directed arc from the descendant to the ancestor creates a cycle. The
graph is no longer a DAG.

2.2 Connections

Three nodes can be fundamentally connected in three ways which result in a DAG.
These fundamental connections represent the possible direct dependencies that can
be modeled and provide the basic framework for how the Markov Property operates
between a subset of nodes within the graph. The serial connection consists of three

BN 6

nodes in a straight line with a central node that has both a parent and a child (Figure
4(a)). The divergent connection consists of single parent with two children (Figure
4(b)). Lastly, the convergent connection consists of child node having two parents. A
special type of convergent connection known as a V-structure occurs, when the two
parents are not connected by an arc (Figure 4(c)).

(a) Serial Connection

A

B

C

(b) Divergent Connection

A

B C

(c) V−Structure

A B

C

Figure 4: The three types of DAG connections.

By conditioning on B, the central node in the serial connection, the nodes A
and C are effectively cutoff from one another (Figure 5(a)). Nodes A and C are
graphically separated, or graphically independent, after conditioning on B. By the
Markov Property this implies that A and C are probabilistically independent after
conditioning on B. As such, nodes A and C are D-separated (from direction-dependent
separation) (Korb & Nicholson, 2011).

Similarly, by conditioning on the parent node, A, of the divergent connection,
the same results occurs (Figure 5(b)). In the divergent case after conditioning on
A, the nodes B and C are D-separated; that is B and C are both graphically and
probabilistically independent after conditioning on A.

The V-structure exhibits a quite different relationship. The parents nodes, A
and B, are graphically and probabilistically independent without conditioning on C
(Figure 4(c)). A and B are D-separated. However, after conditioning on C common
information would be pass to A and B via Bayes Theorem. As such, conditioning
on C creates a relationship between A and B (Figure 5(c)). Given C, A and B
are no longer graphically or probabilistically independent. This does not, however,
violate the Markov property as the direction the information flows does not affect the
conditional factorization of the model.

(a) Serial Connection

A B C

(b) Divergent Connection

A

B C

(c) V−Structure

A B

C

Figure 5: The three types of DAG connections after conditioning on the central node.

BN 7

2.3 Markov Blankets

The three types of basic DAG connections, D-separation, and the Markov property
provide the basis for the next important idea from Graph Theory for Bayesian
networks, the Markov Blanket. A Markov Blanket of a node consists of the node’s
parents, children, and the other parents of its children. The Markov Blanket of node
D from our original generic Bayesian network is highlighted in figure 6. Node D’s
only parent is node C, its only child is node F, and lastly, node E is also a parent of
F and is thus part of node D’s Markov Blanket.

A B

C

D E

F

Figure 6: The Markov Blanket for node D consists of nodes C, E, and F.

The Markov Blanket of a node is the core idea for updating our beliefs about
the local distribution of a particular node. First, recall that our local distribution
for node D was P(D|C) as specified by the conditional factorization and the Markov
Property. However, any evidence obtained for node F, D’s only child, could directly
update our beliefs about node D via Bayes’ Theorem. Furthermore, conditioning on
node F creates a direct dependency between D and E due to the V-structure. Thus,
conditioning on E is necessary to account for all of D’s potential dependencies. Hence,
a Markov Blanket of a node consists of the set of nodes that could potentially affect
our beliefs about D directly. Moreover, the Markov Blanket is the set of nodes which
D-separates a node from the rest of the network.

In turn, Markov Blankets allow for the localization of calculations when belief
updating. In contrast, we could condition a node on every other node in the network
to update our beliefs. “However, this is unfeasible for most real-world problems, and

BN 8

in fact it would not be much different from using the global (full-joint) distribution”
(Scutari & Denis, 2104). In other words, conditioning on every other node in the
network would create a great deal of computational complexity while contending
with the ’curse of dimensionality’. The Markov Blanket allows the computational
aspect of belief updating to circumvent the curse and focus only on the necessary
information needed for inference about a particular node.

3 Bayesian Networks

The preceding section on Graph Theory was not a comprehensive overview of the
graphical ideas present in Bayesian networking, but only a quick survey of the
fundamental ideas necessary to get a clear picture of the inner workings of the
modeling technique. With these ideas in place, we now have the tools to examine
how local distributions are specified, how the dependencies are specified or learned,
and how, via the dependencies, local distributions are updated. The probabilistic
estimations rely on extensions of basic probability theory and Bayesian statistics
(although frequentist methods are available) and are carried out utilizing complex
algorithmic techniques developed in Computer Science.

Many of the developed methods for handling Bayesian networks are available in a
variety of software packages like BayesiaLab, Hugin, Netica, and GeNIe to name
a few. R alone boasts several packages such as bnlearn, catnet, deal, gRbase,
and gRain. Due to extensive techniques, types of models, and algorithms available
for estimation, learning, and updating, much of the available software specializes in
particular applications. The focus of the rest of the paper will be on Discrete Bayesian
Networks, which utilize only discrete (categorical) random variables.

Bayesian networks are not limited to discrete random variables. There are
methods available for networks made entirely of continuous variables (Gaussian
Bayesian networks), networks consisting of discrete and continuous variables (Hybrid
Bayesian networks), networks with serially correlated data (Dynamic Bayesian
networks), and applications augmented with decision and utility nodes (Decision
Graphs). However, discrete Bayesian networks provide a simplistic environment; each
local distribution is specified by a conditional probability table, and calculations are
limited to conditional and marginal probabilities contained in the cells of the table.
Furthermore, most of the available Bayesian networking software can handle discrete
networks, which is not the case for more complex Bayesian networking structures
mentioned above.

The methods illustrated in this paper utilize the bnlearn (Scutari, 2010) and
gRain (Hojsgaard, 2012) packages from R with additional graphical support from
the Rgraphviz (Hansen et al.) package.

3.1 Parameter Learning

The local distributions for a discrete Bayesian network are conditional probability
tables where each node is assumed to follow a multinomial distribution. The

BN 9

categorical probabilities of a variable are broken down conditionally on each
categorical combination of the its parents’ categorical levels. For a motivating
example, the Cancer network presented by Korb and Nicholson, (2011) is used and
is available in the (bnlearn) package (Scutari, 2010). This small network consists
of 5 two-level categorical variables and is designed to estimate the probability of
lung cancer given two contributors to lung cancer (pollution and smoker) and two
symptoms (X-ray and Dyspnoea).

Pollution Smoker

Cancer

Xray Dyspnoea

Figure 7: The Cancer BN from Korb and Nicholson, 2001

As the root nodes Pollution and Smoker do not have parents, their local
distributions (Table 1) are simply the estimated marginal distributions. The
estimated probability for exposure to low level pollution is 0.9, while high level
pollution is 0.1. The estimated probability of a patient being a smoker is 0.3.

Pollution

low 0.90
high 0.10

Smoker

True 0.30
False 0.70

Table 1: Marginal Distributions of Pollution and Smoker

Cancer, however, has two parent nodes, and its local distribution is represented
by a three dimensional conditional probability table (Table 2). Patients exposed to
low levels of pollution that are also smokers have an estimated probability of 0.03
of having lung cancer and 0.97 of not having lung cancer. Changing exposure to
pollution to high increases the estimated probability of having cancer to 0.05.

The local distributions for X-ray and Dyspnoea are represented by a typical
two-dimensional probability table as each node has a single parent, cancer (Table 3).
Examining the Dyspnoea table reveals that patients which have lung cancer have an
estimated probability of 0.65 to be suffering from shortness of breath, while patients
which do not have lung cancer have an estimated probability of 0.30.

BN 10

Pollution: low high

Cancer Smoker: True False True False

True 0.030 0.001 0.050 0.020
False 0.970 0.999 0.950 0.980

Table 2: Conditional Distribution of Cancer given Pollution and Smoker

Cancer

Xray True False

positive 0.90 0.20
negative 0.10 0.80

Cancer

Dyspnoea True False

True 0.65 0.30
False 0.35 0.70

Table 3: Conditional Distributions of X-Ray and Dyspnoea given Cancer

In practice the estimated probabilities and errors can be ’learned’ from the data
by the respective Bayesian networking software. One common method for estimating
the conditional probabilities is to simply use the appropriate MLEs (or proportions).
Assuming the estimated probabilities in the above table are MLEs, then given all
the patients in the data set that have lung cancer, 65% of them are suffering from
Dyspnoea. Whereas, of all the patients in the data set that smoke and have only
been exposed to low levels of pollution, 3% have lung cancer.

Another common estimation technique is to use a Bayesian posterior. In this
case the MLEs are updated using a vague uniform prior with an imaginary sample
size (ISS) which determines the weight of the prior. Furthermore, many available
software packages will allow user specification of the distributions including both
estimates and errors. As such, any Bayesian posterior can be input into the network,
as well as estimates from bias corrected or variance inflated methods.

Another key advantage of Bayesian networks is their inherent ability to deal
with missing data. Parameter estimates can be calculated using the complete cases
for each local distribution. Then, if an observation has missing data, such as Smoker
and Pollution but has data for the remaining three variables, then the distributions
for X-ray and Dyspnoea can incorporate the available information from the partial
observation. The distributions for cancer, pollution, and smoker, however, will not
incorporate the observation unless imputation methods are used.

3.1.1 Conditional Independence Tests

With local distributions estimated, we can assess the strength of the major model
assumption, i.e. conditional independence of the local distributions. This is done by
testing whether each of the included arcs (dependencies) should be in the network
typically by a log-likelihood ratio or Pearson’s X2 test for conditional independence.
The null hypothesis for the test is that two nodes A and B are probabilistically
independent given a set of nodes C, while the alternative is that the respective nodes

BN 11

are not independent. That is,
H0 : A ⊥⊥ B|C

HA : A 6⊥⊥ B|C

“Both tests have an asymptotic χ2 distribution under the null hypothesis” (Scutari
& Denis, 2014), and large test statistics (small p-values) provide evidence that the
tested arc should be in the network.

3.1.2 Network Scores

Two common scoring techniques are used to test the strength of the network as
a whole, the Bayesian Information Criterion (BIC) and the Bayesian Dirichlet
equivalent uniform (BDeu or BDe). Both scores can be repeatedly calculated for
different networks created from the same set of variables. By removing and adding
arcs and variables to a network a new score can be calculated and compared to
the score of the previous version of the network. For both tests a higher score is
interpreted to indicate a better model. As such, if adding an arc increases the score,
then there is evidence supporting its inclusion in the network.

3.2 Structure Learning

Network scores and conditional testing provide the necessary tools to create the
structure of a Bayesian network. The structure of the network is the general layout
of the arcs and how they connect two different nodes. One method for creating the
structure of the Bayesian Network is completely apriori, using prior knowledge and
deductive reasoning about the variables. “In other words, we rely on prior knowledge
on the phenomenon we are modelling to decide which arcs are present in the graph and
which are not” (Scutari & Denis, 2014). An important aspect of Bayesian networks
and the Markov Property is to directly model the inherent direct dependencies of
the variables. “The structure, or topology, of the network should capture qualitative
relationships between variables. In particular, two nodes should be connected directly
if one affects or causes the other, with the arc indicating the direction of the effect”
(Korb & Nicholson, 2011). Often, to accomplish this task, the network is completely
user specified, which tends to be more practical with fewer nodes.

The cancer example above provides a key illustration of this idea. Exposure to
high levels of pollution and smoking both impact or cause a person to develop lung
cancer. Once an individual has cancer, the chances of an x-ray having a positive
result increases, as does the individual’s chance to suffer from shortness of breath. As
such, the network is easily specified by deductive reasoning and prior knowledge.

Often, however, the necessary prior knowledge concerning the relationships of the
variables is not available. Generally speaking, it may be impractical to specify all the
relationships, particularly with larger numbers of variables. The number of possible
networks grows “super-exponentially” with respect to the number of nodes. As such,
learning the network algorithmically may be more practical (Scutari & Denis, 2014).

BN 12

3.2.1 Algorithms

A large amount of research has been specifically devoted to developing algorithms to
learn the structure of a Bayesian network. These algorithms are typically broken into
three types: constraint-based, score-based, and hybrid.

Constraint-based Constraint-based algorithms work by first learning the Markov
Blanket (or parents and/or children) of each node, which establishes undirected arcs.
In turn, the algorithm is constrained by the Markov Blanket. This is done using one of
the conditional independence tests from above with Monte Carlo versions of the tests
available in many Bayesian networking software packages. Once the Markov Blanket
for nodes are established, the conditional independence tests can begin to determine
the directions of the arcs. Typically, the conditional independence tests will not
discover all the dependencies. Many of the remaining undirected arcs, however, can
be directed to preserve the DAG by not inducing cycles. Different algorithms will
then handle the remaining undirected arcs differently. Some may set the directions to
avoid inducing V-structures, while others will leave the arcs undirected and require
the user to specify the remaining dependencies.

The constraint-based algorithms are based on Pearl’s Inductive Causation (IC)
algorithm. The IC algorithm requires that every pair of nodes be checked for
conditional independence, which in most instances is practically unfeasible. As such
the exact IC algorithm has never been implemented but instead adapted by the
Markov Blanket constraint. The PC algorithm was the first implementable version
of Pearl’s IC. Other common constraint-based approaches include the Grow-Shrink
Markov blanket (GS) algorithm and the Incremental Association Markov blanket
(IAMB) algorithm. (Scutari & Denis, 2014)

Score-based Score-based algorithms attempt to maximize the BIC or BDe to find
the ”best” model. Greedy Search algorithms work be adding, dropping, and changing
the direction of arcs and keeping the changes which results in the largest score. Greedy
search algorithms most closely resemble the ’black-box’ techniques for finding the best
linear model from a set of predictors. A common greedy search algorithm used in
practice in the hill-climbing algorithm. Other score-based techniques include genetic
algorithms and simulated annealing. Genetic algorithms explore various structures
then combine their characteristics or randomly altering their structure in attempt
to maximize the score. Simulated annealing algorithms tend to work similarly to
the greedy search algorithms but will accept changes that decrease the score with a
probability inversely proportional to the score decrease. (Scutari & Denis, 2014)

Hybrid Hybrid algorithms combine aspects from the constraint-based and score-
based algorithms. Hybrid algorithms typically constrain each node by a set(s) of
candidates of parents and/or children using conditional testing. Then, within these
candidate sets, attempt to maximize the score using the score-based techniques from
above. Commonly used algorithms include the Sparse Candidate (SC) algorithm and

BN 13

the Max-Min Hill-Climbing (MMHC) algorithm.

Generally speaking the algorithmic techniques for learning the network are ’black-
box’ techniques. Olivier Pourret contests “there is no black-box effect in the modeling
process” (Pourret, 2008) citing the ease of interpretation of the resulting model and
ability to statistically validate the arcs. However, the typical issues with ’black-
box’ techniques are still present; namely, repeated testing or an algorithm taking an
incorrect path and failing to discover the ’best’ model. (Scutari & Denis, 2014)

3.2.2 Black/White Lists

Strictly using apriori knowledge or an algorithmic technique to determine the
structure of a Bayesian Network is typically impractical. Often, in practice some
dependencies are known apriori while others are not. Furthermore, two variables may
be known to be dependent in some way, but the direction of the dependency may be
unknown. Additionally, there may be knowledge available that two variables are in
no way dependent on one another. Whitelists and blacklists attempt to reconcile the
gap between prior knowledge and the computational techniques of algorithms.

Whitelists are sets of arcs specified apriori to be in the model, while blacklists are
sets of arcs specified apriori to not be in the model. In turn, whitelists and blacklists
incorporate available knowledge into a network. After specifying sets of arcs that can
be in or must be left out of the network, algorithmic structure learning techniques can
be employed to determine the remaining structure. Generally, this technique seems to
best capture the modeling process in practice. By combining human knowledge and
computational power networks which better reflect the natural dependencies (known
or unknown) inherent in the variables can be more easily modeled.

3.3 Inference in Bayesian Networks

Inference in Bayesian networks, also known as belief updating, is a powerful analytic
tool capable of creating precise estimates or predictions from partial evidence.
Evidence can come in the form of a new observation or setting the network to
a prescribed state that reflects a question of interest. Evidence is imparted into
the network by setting the appropriate nodes to the desired or observed values.
The evidence will then filter through the entire network updating the conditional
probability tables of all of the unobserved nodes. Once the evidence has been imparted
into the network, then any of the unobserved nodes can be queried to get the desired
probability table.

The conditional probability table of a node may be of direct interest, (a
conditional probability query), or perhaps only the most probable outcome of the node,
(the most likely explanation query). In other instances, belief updating may be used
to validate conditional independence by ensuring probabilities do not update given
evidence from a conditionally independent set of nodes (conditional independence
queries) (Scutari & Denis, 2014).

BN 14

Imparting evidence into leaf nodes with the desire to obtain information from its
parents or ancestors is known as diagnostic reasoning. Diagnostic reasoning moves
against the direction of the arcs. A doctor may try to diagnose lung cancer from
symptoms like Dyspnoea. Predictive reasoning occurs when moving in the direction
of the arcs. Evidence is entered into root nodes with the desire to query from its
children or descendants. A doctor may try to predict whether a person has or will get
lung cancer given they are a smoker. Intercausal reasoning garners information about
“mutual causes of a common effect” which has extended applications with respect to
V-structures. In many instance predictive and diagnostic reasoning are combined. A
doctor will have knowledge about whether a patient is a smoker and suffering from
Dyspnoea. Both pieces of information can be used to obtain a better estimate of the
probability that the patient has lung cancer (Korb & Nicholson, 2011).

3.3.1 Serial

Exact inference in a Bayesian network is done through repeated application of Bayes’
Theorem to the conditional factorization of the joint probability distribution. The
basic process can be nicely illustrated by an example of a serial connection. Suppose
the serial connection is comprised of two-level categorical nodes A, B, and C, and
the levels of each node are True and False. The resulting conditional factorization is
P (A,B,C) = P (A)P (B|A)P (C|B)

A B C

Figure 8: Bayesian Network comprised of a single Serial Connection

With the simplified network suppose we would like to update our beliefs based on
evidence for node A. The new evidence is that A=T. By setting A=T this information
will directly pass to node B (Figure 9). The updated distribution of B will simply be
the marginal P (B = b|A = T).

BN 15

A B C

Figure 9: Setting Evidence A=True updates B

After the conditional probability table for B has been updated with the new
evidence, the conditional probability table for C can now be updated by the evidence
using the new distribution for B (Figure 10). Both the marginal distribution,
P (C = c|A = T), and the conditional distribution, P (C = c|B = b, A = T), for
node C can be obtained through the conditional factorization and Bayes’ rule.

A B C

Figure 10: Then B updates C with evidence from A

Suppose instead the evidence is that C=T. Imparting evidence about a leaf node
means the direction of information is going against the direction of the arcs (direction
of belief updating indicated by gray arcs in Figure 11). Setting C equal to True
will directly update the conditional probabilities of B. Notice that the conditional
factorization contains the local distribution P (C|B), but the distribution of interest
is of the form P (B|C). Thus, updating our beliefs concerning B is a direct application
of Bayes’ Theorem. Bayes’ Theorem provides the marginal P (B = b|C = T)
and applying Bayes’ Rule will obtain the conditional P (B = b|C = T,A = a).
With the updated conditional probability table for B, the information can then pass
to A. Once again belief updating will use Bayes’ Theorem to obtain the marginal
P (A = a|C = T), but rely on the conditional distribution P (B = b|C = T,A = a)
for the evidence.

BN 16

A

B

C
Figure 11: Setting Evidence C=True

The marginal distribution for P (A = a|C = T) could be directly obtained from
Bayes’ Theorem without using the updated conditional distribution for B (as could
P (C = c|A = T)). However, the step-by-step passing of evidence illustrates a key
idea about how belief updating is implemented in practice through a process known
as message passing.

3.3.2 Kim and Pearl’s Algorithm

The idea of message passing is essential when updating beliefs in a larger network.
Evidence could be entered into multiple children or decedents, or into multiple parents
or ancestors, or possibly any combination therein. With messages coming in from
multiple parents and children, belief updating can become computationally intensive
but is still done entirely using the principles of Bayes’ Theorem and the conditional
factorization of the model.

Kim and Pearl’s message passing algorithm was designed specifically for belief
updating in a Bayesian network. The algorithm handles all the appropriate message
information and reconstructs Bayes’ Theorem at a queried node. The information
handled by the algorithm are messages from the children (which play the role of the
likelihood), messages from the parents (which play the role of the prior), and the
original conditional probability tables (which also play a role in the prior as they are
conditional on the parents). Once a distribution has been updated by the algorithm,
it can then pass the evidence along its other arcs to the other nodes in the network.

The algorithm is best illustrated by an example from Korb and Jensen (2011).
In the Bayesian network found in figure 12, evidence is entered into node M. The
evidence then propagates to node A as prior evidence. The conditional probability
table for node A is updated. Then A passes along the information to nodes B and
E as prior information and to node J as likelihood information. Each of the local
distributions for B, E, and J are updated. Finally, J sends the information as a
message to node Ph as prior information.

BN 17

Figure 12: Example of Kim and Pearl’s message passing algorithm (Korb & Nicholson,
2011)

If instead evidence was entered for nodes M and E, they would simultaneously
pass messages to node A. Likelihood information would come from node E, while prior
information would come from node M. After updating the conditional probability
table for node A, the algorithm would send a message from node A to nodes B and
J as before.

Although Kim and Pearl’s message passing algorithm is a powerful tool for
localizing calculations, its functionality is limited to a special type of graph known
as a polytree. “Polytrees have at most one path between any pair of nodes; hence
they are referred to as singly-connected networks” (Korb & Nicholson, 2011). The
first Bayesian network found in Figure 1, provides such an example. In that network
there were two paths from node C to node F. If a Bayesian network contains nodes
in which there is more than one path, additional tools are needed for belief updating.

3.3.3 Junction trees

If a network is multiply-connected, then there are at least two nodes that are connected
by more than one path. In such cases the network will first need to be converted into
a junction tree to conduct exact inference. There are several algorithms available for
converting DAGs into junction trees, but they all follow the same basic steps.

The first step is to create a moral graph from the DAG. This process is done by
undirecting all of the arcs, then ‘marrying’ any parents that are not connecting by
an arc. Marrying the parents simply means connected them with an undirected arc.
Once married it is ‘moral’ for the two nodes to have a child. Using the first Bayesian
network presented in Figure 1 and 13(a), a moral graph can be created from its DAG
(Figure 13(b)). Every arc is now undirected, and nodes E and D have been married.

BN 18

(a)

A B

C

D E

F

(b)

A

B

C

D

E

F

Figure 13: Moralization of DAG presented in Figure 1

The second step is to triangulate the moral graph. Triangulation simply means
that any cycle present in the graph that consists of greater nodes must be broken into
a subcycles consisting of exactly three nodes. In essence this implies that any set of
three nodes in close proximity within the network must have a triangle of undirected
arcs connecting them. Figure 13(b) is also a triangulated graph.

The third step involves generating a new structure for the graph composed of
maximal cliques and separator nodes. A maximal clique is a “maximal subset of
nodes in which each element is adjacent to all the others” (Scutari & Denis, 2014) or a
compound node comprised of adjacent nodes from the original DAG. Separator nodes
are special placeholders which handle information during the message passing phase
of belief updating. A separator node consists of the nodes that are in the interaction
between two adjacent cliques. Cliques are represented by ovals and separator nodes
by boxes in Figure 14 below.

A B C C D EC E D FD E

Figure 14: Junction tree of DAG in figure 1

Once the junction tree is updated, new distributions need to be calculated for
the cliques. The distributions for cliques are called potentials. Clique potentials are
not typically probability distributions. The potential functions do, however, retain

BN 19

the information from the probability distributions from which they were constructed.
Moreover, they can easily be reconstituted into the full-joint distribution as, per our
example, P (A,B,C,D,E, F) = q(C,B,A)q(C,D,E)q(FDE) where q(C, B, A) is the
potential for the ‘C, B, A’ clique.

Once the clique potentials have been calculated from the local distributions, we
can move on with belief updating. Junction trees are special forms of poly trees,
and hence, adaptations of Kim and Pearl’s message passing algorithm can be used.
The process is similar to the one presented above, but utilizes the clique potentials
for calculations. The separator nodes handle the messages that need to be passed
between two cliques. After evidence has propagated through the junction tree, the
clique potentials have been updated and are now clique marginals. A clique marginal
is the joint distribution for the nodes in the clique. In turn, marginal and conditional
distributions for any of the nodes in a clique can be easily obtained.

3.3.4 Approximate Inference

Exact inference in a Bayesian network is a powerful tool, but is generally not possible
in larger networks. For networks which contain a large number of nodes, arcs, or have
nodes comprised of variables with large numbers of levels, exact inference becomes
too computationally intensive. In turn, many approximate inferential algorithms and
methods have been developed. Most are comprised of common simulation techniques
found throughout the field of statistics. The most commonly employed algorithms
are the Logic Sampling Algorithm and the Likelihood Weighting Algorithm.

The logic sampling method works from the root nodes down to the leaf nodes.
First, a random draw from each of the leaf nodes is taken with probabilities equal
to the respective levels. The distributions for the next level of nodes can then be
marginalized based on the draws obtained from their parents. From these marginal
distributions a random draw is again taken respective of the categorical probabilities.
This process is repeated until a draw has been taken from every node in the network.
This completed case represents a single sample. After many samples have been taken,
the samples are subsetted to the cases which match the evidence of interest. Estimated
probabilities can then be obtained for any node of interest from this subset of the
samples.

Likelihood weighting works on a similar principle starting from the root nodes
and working down. When the algorithm draws from an evidence node, the level of
interest is always drawn resulting only in samples that match the evidence. The cases,
however, do not constitute a full sample and must be corrected. Instead of adding 1
to the number of samples for a whole case, the likelihood of the evidence is added.
The numerator of an estimated probability is then the likelihood of the queried node
given the evidence.

Both of these methods rely on rejection sampling and generate each sample
completely. In turn, they may be quite inefficient when the evidence has a small
probability of occurring such as disease in a population. In such instances different
algorithms which utilize MCMC sampling techniques must be used.

BN 20

4 Conclusion

Bayesian networks are a powerful new modeling tool that are gaining popularity
and widespread use due to the advances in computer technology. They are capable
of handling missing data and making inference for observations with missing data.
Additionally, they are quite good for model averaging and combining prior studies.
They have applications in almost every field and have been an important tool in
medicine and cellular biology for many years. With their growing popularity in
genetics and economics, they will undoubtedly become an important statistical tool.

BN 21

5 Appendix

5.1 References

� S. Andreassen, F. V. Jensen, S. K. Andersen, B. Falck, U. Kjrulff, M. Woldbye,
A. R. Srensen, A. Rosenfalck, and F. Jensen. MUNIN - an Expert EMG
Assistant. In Computer-Aided Electromyography and Expert Systems, Chapter
21. Elsevier (Noth-Holland), 1989.

� I. A. Beinlich, H. J. Suermondt, R. M. Chavez, and G. F. Cooper. The
ALARM Monitoring System: A Case Study with Two Probabilistic Inference
Techniques for Belief Networks. In Proceedings of the 2nd European Conference
on Artificial Intelligence in Medicine, pages 247-256. Springer-Verlag, 1989.

� Marco Scutari, Jean-Baptiste Denis. (2014) Bayesian Networks with Examples
in R. Chapman and Hall, Boca Raton. ISBN 978-1482225587.

� Radhakrishnan Nagarajan, Marco Scutari, Sophie Lebre. (2013) Bayesian
Networks in R with Applications in Systems Biology. Springer, New York.
ISBN 978-1461464457.

� Jensen, F. V., Neilsen, T. D. (2007). Bayesian networks and decision graphs
2nd ed. New York: Springer.

� Editors: Pourret, O., Nam, P., Marcot, B. G. (2008). Bayesian networks: A
practical guide to applications. Chichester, West Sussex, Eng.: John Wiley.

� Korb, K. B., Nicholson, A. E. (2010). Bayesian artificial intelligence. Boca
Raton, FL: CRC.

� Sren Hjsgaard (2012). Graphical Independence Networks with the gRain
Package for R. Journal of Statistical Software, 46(10), 1-26. URL
http://www.jstatsoft.org/v46/i10/.

� Soren Hojsgaard, David Edwards and Ste en Lauritzen (2012). Graphical
Models with R. Springer

� Kasper Daniel Hansen, Jeff Gentry, Li Long, Robert Gentleman, Seth Falcon,
Florian Hahne and Deepayan Sarkar (). Rgraphviz: Provides plotting
capabilities for R graph objects. R package version 2.14.0.

� David B. Dahl (2016). xtable: Export Tables to LaTeX or HTML. R package
version 1.8-2. https://CRAN.R-project.org/package=xtable

� Martin Elff (2016). memisc: Tools for Management of Survey Data and the
Presentation of Analysis Results. R package version 0.99.6. https://CRAN.R-
project.org/package=memisc

BN 22

� R Core Team (2016). R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna, Austria. URL
https://www.R-project.org/.

BN 23

5.2 R code

sdag <- model2network("[A][B][C|A:B][D|C][E|C][F|D:E]")

samp.graph <- graphviz.plot(sdag)

rel <- read.bif('alarm.bif.gz')

dcanc.graph <- graphviz.plot(rel)

nodag <- new("graphNEL", nodes=c("Ancestor", "A", "Descendent"),

edgemode="directed")

nodag <- addEdge("Ancestor", "A", nodag,1)

nodag <- addEdge("A", "Descendent", nodag,1)

ddag <- nodag

nodag <- addEdge("Descendent", "Ancestor", nodag,1)

eAttrs <- list()

eAttrs$label <- c("Descendent~Ancestor"="X")

eAttrs$fontcolor <- c("Descendent~Ancestor"="red")

eAttrs$fontsize <- c("Descendent~Ancestor"=48)

plot(ddag, main="(a) Acyclic")

plot(nodag, edgeAttrs=eAttrs, main="(b) Cyclic")

sedag <- empty.graph(node=c("A", "B", "C"))

sedag <- set.arc(sedag, "A", "B")

sedag <- set.arc(sedag, "B", "C")

didag <- empty.graph(node=c("A", "B", "C"))

didag <- set.arc(didag, "A", "C")

didag <- set.arc(didag, "A", "B")

cdag <- empty.graph(node=c("A", "B", "C"))

cdag <- set.arc(cdag, "A", "B")

cdag <- set.arc(cdag, "B", "C")

cdag <- set.arc(cdag, "A", "C")

vdag <- drop.arc(cdag, "A", "B")

graphviz.plot(sedag, main="(a) Serial Connection")

graphviz.plot(didag, main="(b) Divergent Connection")

graphviz.plot(vdag, main="(c) V-Structure")

BN 24

hlight1 <- list(nodes=c("B"), fill="gray")

graphviz.plot(sedag, main="(a) Serial Connection", layout="circo",

highlight=hlight1)

hlight2 <- list(nodes=c("A"), fill="gray")

graphviz.plot(didag, main="(b) Divergent Connection",

highlight=hlight2)

hlight3 <- list(nodes=c("C"), fill="gray")

graphviz.plot(vdag, main="(c) V-Structure", highlight=hlight3)

edgeRenderInfo(samp.graph) <- list(col = c("A~C"="gray", "B~C"="gray",

"C~E"="gray"),

lwd = c("C~D"=3, "D~F"=3, "E~F"=3))

nodeRenderInfo(samp.graph) <- list(col = c("A"="gray", "B"="gray"),

textCol = c("A"="gray", "B"="gray"),

fill = c("D"="gray"))

graph.par(list(nodes=list(fontsize=4)))

renderGraph(samp.graph)

rel <- read.bif('cancer.bif.gz')

graphviz.plot(rel)

pol <- rel$Pollution$prob

names(dimnames(pol)) <- "Pollution"

print(xtable(pol), floating=FALSE, hline.after=NULL,

add.to.row=list(pos=list(-1,0, nrow(pol)),

command=c('\\toprule\n','\\midrule\n','\\bottomrule\n')))

smoke <- rel$Smoker$prob

names(dimnames(smoke)) <- "Smoker"

print(xtable(smoke), floating=FALSE, hline.after=NULL,

add.to.row=list(pos=list(-1,0, nrow(smoke)),

command=c('\\toprule\n','\\midrule\n','\\bottomrule\n')))

canc <- rel$Cancer$prob

toLatex(ftable(canc, row.vars=1), digits=3)

BN 25

xray <- rel$Xray$prob

toLatex(ftable(xray), digits=2)

dysp <- rel$Dyspnoea$prob

toLatex(ftable(dysp), digits=2)

mc.dag <- model2network("[A][B|A][C|B]")

mc.nohl <- graphviz.plot(mc.dag, layout="circo")

edgeRenderInfo(mc.nohl) <- list(lwd = c("A~B"=3), col = c("A~B"="gray"))

nodeRenderInfo(mc.nohl) <- list(fill = c("A"="gray"))

renderGraph(mc.nohl)

edgeRenderInfo(mc.nohl) <- list(lwd = c("A~B"=3,"B~C"=3),

lty = c("B~C"=2),

col=c("A~B"="gray", "B~C"="gray"))

nodeRenderInfo(mc.nohl) <- list(fill = c("A"="gray", "B"="lightgray"),

lty=c("B"=2))

renderGraph(mc.nohl)

mc.atg <- new("graphNEL", nodes=c("A", "B", "C"),

edgemode="directed")

mc.atg <- addEdge("B", "C", mc.atg, 1)

mc.atg <- addEdge("C", "B", mc.atg, 1)

mc.atg <- addEdge("A", "B", mc.atg, 1)

mc.atg <- addEdge("B", "A", mc.atg, 1)

tmp <- layoutGraph(mc.atg, recipEdges="distinct", layoutType="dot")

edgeRenderInfo(tmp) <- list(lwd = c("C~B"=3, "B~A"=3),

lty = c("B~A"=2),

col=c("C~B"="gray", "B~A"="gray"))

nodeRenderInfo(tmp) <- list(fill = c("C"="gray", "B"="lightgray"),

lty=c("B"= 2))

renderGraph(tmp)

BN 26

mdag <- moral(sdag)

graphviz.plot(sdag, main="(a)")

graphviz.plot(mdag, main="(b)")

jtree.ex <- new("graphNEL", nodes=c("A B C", "C D E", "C", "E D F",

"D E"), edgemode="directed")

jtree.ex <- addEdge("A B C", "C", jtree.ex, 1)

jtree.ex <- addEdge("C", "C D E", jtree.ex, 1)

jtree.ex <- addEdge("C D E", "D E", jtree.ex, 1)

jtree.ex <- addEdge("D E", "E D F", jtree.ex, 1)

jtt <- layoutGraph(jtree.ex, layoutType="circo")

nodeRenderInfo(jtt) <- list(shape = c("C"="box", "D E"="box"))

renderGraph(jtt)

	Introduction
	What is a Bayesian Network
	Graphical and Probabilistic Representation
	ALARM Example

	Graph Theory
	Directed Acyclic Graphs
	Connections
	Markov Blankets

	Bayesian Networks
	Parameter Learning
	Conditional Independence Tests
	Network Scores

	Structure Learning
	Algorithms
	Black/White Lists

	Inference in Bayesian Networks
	Serial
	Kim and Pearl's Algorithm
	Junction trees
	Approximate Inference

	Conclusion
	Appendix
	References
	R code

