
1 Abstract

Literature on abundance estimation models using mark-recapture data often states that

Bayesian abundance models outperform classical estimators, particularly when recapture

numbers are small. We use simulated data to compare the performance the classical Petersen

estimator, a likelihood-based estimator we call the “modeled-p” estimator, and a Bayesian

estimator. This study was motivated by a particular mark-recapture study from the Kootenai

River in Northwestern Montana, and will focus on the sampling design used in that study.

Contents

1 Abstract 1

2 Introduction 3

3 Methods 4

3.1 Sampling Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.2 Data Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4 Abundance Estimates 6

4.1 Petersen Estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4.2 Modeled-p Estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4.3 Bayesian Estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5 Simulation Study 14

1



5.1 Obtaining MCMC Draws Using JAGS . . . . . . . . . . . . . . . . . . . . . 14

6 Discussion 15

6.1 Uncertainty Intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

6.2 Modeled-p Performance When p1 and p2 Differ . . . . . . . . . . . . . . . . 18

6.3 Estimator Comparison for Zero Recapture Count Events . . . . . . . . . . . 18

7 Further Work 23

8 Conclusions 25

9 Acknowledgments 29

10 Appendix A 30

10.1 Dam Section Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

10.2 Flowerpipe Section Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

10.3 Rereg Section Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

10.4 Troy Section Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

11 Appendix B 41

11.1 R Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2



2 Introduction

The problem of estimating and monitoring wildlife populations is fundamental to the study

of ecology and wildlife biology. Possibly the most common tool utilized in these abundance

investigations is the mark-recapture study, of which there are many variations. After collect-

ing mark-recapture data, scientists may choose among a large number of possible methods

for modeling and estimating abundance from the mark-recapture data. Literature on the

topic often claims that Bayesian abundance models outperform classical estimators, particu-

larly when recapture numbers are small. However, Bayesian models can be more difficult to

understand for researchers who do not have a strong background in statistics. Additionally,

they can be more time consuming to implement in code. Therefore, we have specified a

likelihood based estimator we will call the “modeled-p” estimator, which we believe should

show performance similar to a Bayesian estimator in the problematic situation in which re-

capture numbers are small. The goal of this paper is to use simulated mark-recapture data

to assess the relative performance of our modeled-p estimator, our Bayesian estimator, and

the classical Petersen estimator.

This simulation study was motivated by mark-recapture data collected at four sites down-

stream of the Libby Dam on the Kootenai River in Northwestern Montana. Thus, we will

use data simulated that reflect the structure of the sampling design used in the Kootenai

study.
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3 Methods

3.1 Sampling Design

A huge variety of sampling designs for mark-recapture studies exists. The motivation for

this paper comes from mark-recapture data collected from 1985 to 2015 at four sites (Dam,

Flowerpipe, Rereg, and Troy) downstream of the Libby dam on the Kootenai River in North-

western Montana. Thus, this paper will focus on the sampling design used to collect these

data.

Rainbow trout were the primary species of interest in the Kootenia study, and fish were

captured by electrofishing during two sampling periods each year. The two sampling occa-

sions typically occurred approximately one week apart. Not every site was sampled every

year; there were 54 unique site/year combinations. Fish were not given individually identify-

ing marks for the majority of the study. Captured fish were measured, weighed, fin-clipped,

and returned to the section of river from which they were caught. Electrofishing equipment is

known to perform poorly for small fish. Therefore, we will assume the probability of capture

varies by length. We will consider 10 different small length classes (< 100mm, [100,150),

[150,175), [175,200), [200,225), [225,250), [250,275), [275,300), [300,325), and > 325) and

four different large length classes (< 150mm, [150,250), [250,325), > 325). All abundance

modeling will be done using the small length classes, but we are interested in making infer-

ence for the large length classes. Furthermore, since the motivating study conducted separate

sampling efforts at four different sites during various years between 1985 and 2015, we will

4



also allow the probability of capture to vary across sites and years. Thus, each model will

produce an estimate for each Nlength/site/year (denoted Nlsy for the remainder of this paper).

3.2 Data Simulation

In order to assess the relative performance of the various estimators outlined in this paper,

we simulated data with a structure similar to that outlined above. To simulate our data

set, we made 54 random draws from a NegBinom(size = 10, µ = 5000) distribution. These

represent our true total trout populations for the 54 unique site/years. For each site/year,

we then drew Nsy lengths from a Gamma(shape = 2.2, rate = .3) distribution and multiplied

each by 20 (a histogram of which is displayed in figure 1, below). These values represent the

lengths of the fish in each site/year population. We then binned the fish from each site/year

into our 10 length classes, counting how many fish were in each length/site/year. We then

simulated p1lsy (the probability of capture on the first pass) and p2lsy (the probability of

capture on the second pass) to resemble those observed in the Kootenai data, allowing for

variability in these probabilities across years and sites.

For each Nlsy we drew one Bin(Nlsy, p1lsy), yielding a n1lsy (the number of fish captured in

the first pass for a given length/site/year), one Bin(Nlsy, p2lsy), yielding a n2lsy (the number

of fish captured in the second pass for a given length/site/year), and one Hyper(n1lsy , Nlsy−

n1lsy , n2lsy), yielding a m1lsy (the number of recaptured fish for a given length/site/year).

The first several lines of the simulated data set, with weight omitted, are displayed below in

Table 1. The length variable is the median of the length class to which the fish belongs.
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Figure 1: Distribution of Lengths

Table 1: Simulated Data
site year length class n1 n2 m N p1 p2 length
Dam 1992 [0,100) 36 51 4 662 .058 .079 61.97
Dam 1992 [100,150) 13 24 0 365 .030 .051 123.52
Dam 1992 [150,175) 3 1 0 136 .009 .012 162.01
Dam 1992 [175,200) 0 1 0 117 .014 .008 186.95
Dam 1992 [200,225) 2 0 0 93 .018 .003 211.94
Dam 1992 [225,250) 1 0 0 66 .021 .001 236.85

4 Abundance Estimates

The basic problem when attempting to estimate abundance from such a sampling design is

that the p1, p2, and N are all unknown and thus must be jointly estimated. To visualize

this problem, consider a simplified version in which we assume p1 = p2 and, thus, n1 and

n2 are two realizations from a binomial distribution with probability equal to p and total

number of trials equal to N (both unknown). Figure 2, plotted below, is the likelihood

surface of a binomial distribution, which was generated using simulated data for which the

true population size N is 218, the true probability of capture p is 0.1094, n1 = 27, n2 = 21,

and m = 1. Due to the prominent ridge on the likelihood surface, small errors in estimation
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Figure 2: Likelihood Surface

of p can result in drastic errors in the estimation of N .

4.1 Petersen Estimator

Perhaps the simplest mark-recapture estimator available is the Petersen estimator. The

Petersen estimator relies on a number of simplifying assumptions (Seber, 1982):

1. The populations is closed, so N is constant from sampling period one to sampling

period two (i.e. no animals enter or leave the population from the beginning of the

first sampling period to the end of the second).

2. All animals have the same probability of capture.

3. Marking does not affect the catchability of an animal.

4. The second sample is a simple random sample.

7



5. Animals do not lose their marks in the time between the two samples.

6. All marks are reported on recovery in the second sample.

When these assumptions hold, it is reasonable to equate the proportion of marked animals

in the second sample to the proportion of captured animals in the first sample. Thus, for

each length/site/year combination, we have

mlsy

n2lsy

=
n1lsy

N̂lsy

=⇒ N̂lsy =
n1lsyn2lsy

mlsy

The Petersen estimator has the benefit of being very simple to calculate, but the drawback

of being so simple as to show poor performance in some situations. Indeed, Seber states,

“The properties N̂ . . . have been discussed fully by Chapman [1951]. He shows that although

N̂ is a best asymptotically normal estimate of N as N → inf, it is biased, and the bias can

be large for small samples,” (Seber, 1982). Consider the likelihood surface displayed in figure

2. Above, in figure 3, the same surface is displayed with the Petersen estimator added. For

the particular values of n1, n2, and m given above, the Petersen estimator is more than two

and a half times greater than the true value of N, due in large part to the fact the m is small

(equal to 1, in this case), which results in an underestimation of p̂.

4.2 Modeled-p Estimator

One of the primary issues with the Petersen estimator is that it performs especially poorly

when m is small (and is undefined when m = 0). Essentially, this estimator is deriving N̂ by

dividing the number captured in the first sample by the probability of capture in the second

sample, which is estimated by m
n2

. If the probability of capture is small (as is typically the

case when m is very small), we approach the left hand portion of our likelihood surface,
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Figure 3: Petersen Estimator

where small shifts in the estimated p̂ result in very large shifts in the estimated N̂ . For

mark-recapture data on fish, this is especially problematic for small length classes, where

we know the probability of capture to be small, and very large length classes, where there

are simply very few fish to capture, which can sometimes result in small sample sizes and

thus small m values. Our modeled-p estimator attempts to address this problem by sharing

information about the probability of capture for a given length class across sites and years.

When developing the modeled-p estimator for the original data, our aim was to model

the probability of capture with length, site, and year effects. To this end, we used a logistic

regression model where those fish in the second sample who are recaptures from the first are

considered “successes” and the remaining fish in the second sample are considered “failures.”

We observed a roughly linear trend in the Kootenai data between the log odds of capture
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Figure 4: Log Odds and Length Class by Site

in the second sample and length, and thus included in our logistic regression model a fixed

effect for length (see figure 4, above). Similarly, we observed in the Kootenai data evidence

that different sites had different intercepts, but not different slopes on length. Therefore, we

also included a fixed effect for site. Finally, we created a site by year interaction variable,

which was included as a random effect. This helps account for some of the heterogeneity in

capture probability due to unaccounted for variables. The resulting model is

plsy = logit−1(β0 + β1length+ β2sites + αsy)

This model provides us with a probability distribution that our expected capture probabili-

ties follow. That is, we assume β ∼ N(β̂, σ2(X tX)−1).

Our next step was to simulate random p̂ draws from this distribution, giving us a sense

of the uncertainty in our β̂ estimates. We used Gelman’s sim() function in the arm package
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(Gelman and Su, 2015). This function works by making use of the fact that, for a ran-

dom sample from a Normal distribution, (n−1)s2

σ2 ∼ χ2
(n−1). For each simulation, the function

makes a random draw from a χ2 distribution, uses this draw to compute a new σ̂2, and then

generates new β̂ estimates from the new σ̂2. We then calculated a new expected p̂ for each

length/site/year from each simulated regression curve. Using these new p̂’s obtained from

our simulated regression curves, we can derive population estimates in the manner of the

Petersen estimator. To illustrate this process, suppose we simulate 1000 regression curves

using the sim() function. We will then predict 1000 p̂∗’s for each length/site/year. For each

of these p̂∗’s, we will calculate an N̂∗ = n1

p̂∗
, giving us a kind of “distribution” of N̂ ’s. We

will take the modeled-p estimator to be the mean of the N̂∗’s. Furthermore, we can obtain

an uncertainty interval around this estimate.

We believe our modeled-p version of the Petersen estimator should show much better

performance than the classical Petersen estimator due to the sharing of information about

the probability of capture within each length class across sites and years.

4.3 Bayesian Estimator

Our Bayesian estimator is similar in structure to the modeled p estimator, and the model is

fully specified below. Since the Bayesian model specification summarizes the data by capture

histories, a brief overview of capture histories follows.
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For a study in which two sampling efforts are made each year, possible capture histories

are as follows:

• capture history (1,0) corresponds to a fish captured on the first pass, but not captured

on the second pass

• capture history (0,1) corresponds to a fish not captured on the first pass, but captured

on the second pass

• capture history (1,1) corresponds to a fish captured on both the first and second passes

• capture history (0,0) corresponds to a fish captured on neither the first nor the second

pass (this is the only capture history which is unobservable, and hence not observed

in the data)

Let x1 be the number of fish for a given length/site/year that display capture history (1,0),

x2 be the number of fish that display capture history (0,1), and so on. Taken together, x1,

x2, and x3 follow a multinomial distribution. That is, (x1, x2, x3) ∼Multi(p10, p01, p11;Ncap)

where

f(x1, x2, x3) =
N !

x1!x2!x3!
px110p

x2
01p

x3
11

Let p1 equal the probability of captured on the first pass, and p2 equal the probability

of capture on the second pass. Then the parameter p10 = p1(1 − p2), p01 = (1 − p1)p2,

p11 = p1p2, and p00 = (1− p1)(1− p2). The parameter Ncap is equal to the sum of the xi’s.

In the Bayesian model specified below, Xlsy is the vector of capture histories counts (x1lsy ,

x2lsy , x3lsy).
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Xlsy ∼Multi(p01lsy , p10lsy , p11lsy ;Ncaplsy)

Ncaplsy = n1lsy + n2lsy −mlsy

Ncaplsy ∼ Pois(λlsy), λlsy ∼ Gamma(0.1, 0.1)

Nlys =
λlsy
pcaplsy

, pcaplsy = p1lsy + p2lsy − p1lsyp2lsy

logit(p1lsy) ∼ N(µls + αys, σp), σp ∼ Half Cauchy

logit(p2lsy) ∼ N(µls + αys, σp), σp ∼ Half Cauchy

µls ∼ N(β0s + β1slength, σs), σs ∼ Half Cauchy

β0 ∼ Cauchy(0, 10), β1 ∼ Cauchy(0, 2.5)

αys ∼ N(0, σys), σys ∼ Half Cauchy

We assume our three observed capture histories follow a multinomial distribution with

unknown capture probabilities (p1lsy , p2lsy , and p1lsyp2lsy) and given total number captured

(Ncaplsy). Ncaplsy is assumed to follow a Poisson distribution with rate parameter λlsy,

and λlsy is assumed to follow a Gamma(0.1, 0.1) distribution. This prior on λlsy was cho-

sen for two reasons. First, the gamma distribution is a common choice of prior for Poisson

rate parameters, and a Gamma(0.1, 0.1) is considered a standard choice of “vague” prior.

Second, Raftery suggests 1
λ

as a choice of prior in a similar model (Raftery, 1988). The

Gamma(0.1, 0.1) distribution has a similar shape but is proper and thus supported by

JAGS. The abundance estimate Nlsy is defined to be λlsy/pcaplsy , where pcaplsy is the proba-

bility of a fish begin captured on one or both passes. Similar to the modeled-p estimator,

the logit transformed p1lsy ’s and p2lsy ’s are modeled using length/site and site/year effects
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(logit(pilsy) ∼ N(µls + αys, σp)). The length/site effect is assumed to follow a normal distri-

bution with mean equal to β0s + β1slength, where β0 ∼ Cauchy(0, 10), β1 ∼ Cauchy(0, 2.5),

and length is standardized (Gelman et al., 2008). We consider the site/year effect to be

random, and thus assign it a normal distribution centered at zero. All variance parameters

are given folded Cauchy prior distributions, which are considered vague. This choice of prior

is further supported by Gelman’s discussion of choice of prior distribution for hierarchical

variance parameters in his 2006 paper (Gelman et al., 2006).

5 Simulation Study

In order to compare the performance of the three estimators, we generated N̂lsy estimates

from each model using our simulated data. This approach allows us to directly compare

estimates to one another and the the true parameter values.

5.1 Obtaining MCMC Draws Using JAGS

The posterior distributions for each Nlsy and pcaplsy were obtained using the Gibbs sampler

JAGS (Plummer, 2003). We then took the posterior mean of each Nlsy to be our Bayesian

abundance estimator. Code for our JAGS program can be found in the appendix. We ran

three chains for 17000 iterations each and discarded the initial 2000 iterations from each

chain, resulting in a total of 45000 draws from each posterior distribution. We assessed

convergence using the Gelman-Rubin diagnostic R̂, the largest of which was 1.06. Since we

have 540 posterior N distributions and 540 posterior pcap distributions, we did not examine
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sample path plots for each. However, we did construct sample path plots for parameters

with the largest R̂’s, to ensure proper mixing and full exploration of the parameter space.

6 Discussion

We can compare the performance of our three estimators by constructing caterpillar plots

for each length/site/year combination. The original Kootenia data were broken into four

distinct length classes: < 150mm, between 150 and 250mm, between 250 and 325mm, and

> 325mm. We will use these larger length classes when constructing our plots, both for

the purpose of reducing the number of plots and because these are the length classes about

which we were originally interested in making inference. The plots are grouped by length

class and site and can be found in the appendix. The plot of abundance estimates for each

larger length/site combination is grouped with its associated smaller length/site plots for

probability of capture estimates. An example of this grouping is the Dam site for length

class <150mm plotted below with its associated [0, 100) and [100, 150) length class estimated

probability of capture plots.

Our Bayesian model works by defining Nlsy =
λlsy
pcaplsy

, where λlsy is the expected number

captured for a given length/site/year, and pcaplsy is the probability that a fish is ever captured

(p1lsy + p2lsy − p1lsyp2lsy). We can see intuitively that this estimator should produce accurate

estimates of Nlsy when the model does a good job of estimating pcaplsy . If p̂caplsy is estimated

too low, the resulting N̂lsy will be too large, and vise versa. Similarly, the precision (width

of the posterior interval) with which pcaplsy is estimated determines the precision with which
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Nlsy can be estimated.

The modeled-p estimator works by assuming p1lsy = p̂2lsy , where p̂2lsy is the probability

of capture predicted from our logistic regression model incorporating length, site, and year

effects. We obtain our estimated Nlsy’s by computing n1

p̂2lsy
. Therefore, we can see intuitively

that this estimator should produce accurate estimates of Nlsy when p̂2lsy is a good estimator

of p1lsy .

Our classical Petersen estimator works by assuming p1lsy = p̂2lsy , where p̂2lsy = m
n2

. We

obtain our estimated Nlsy by computing n1

p̂2lsy
and therefore, this estimator should produce
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accurate estimates of Nlsy when p̂2lsy accurately estimates p1lsy . It tends to show every poor

performance when m is small, and is undefined when m = 0. We can see from the plots

on the following pages and in the appendix that its overall performance is erratic: for some

length/site/years, it estimates N̂ almost perfectly, while in other cases it over-estimates N̂

by two or three times.

6.1 Uncertainty Intervals

In general, it appears that the confidence intervals associated with our modeled-p estimator

are smaller than the posterior intervals associated with our Bayesian estimator. We suspect

our choice of vague priors in the Bayesian model contributes to the width of the intervals.

Furthermore, the problem appears to be at its worst when recapture counts are small. The

variability in the modeled-p estimator, on the other hand, comes entirely from simulating

new variance parameters using the identity s = σ̂
√

(n− k)/X2, where X2 is a random draw

from a χ2
(n−k) distribution. The width of each confidence interval for the predicted p̂’s is

approximately 4σ̂ (note that σ̂ is the sum of two sources of variation: the overall variation

in the p̂’s and the group level variation from the site/year random effect). However, since

we obtained Nlsy estimates by dividing n1lsy by the p̂lsy predicted from the model, the con-

fidence intervals for the resulting N ’s come directly from the confidence intervals from the

p’s. Therefore, when n1lsy is large, the resulting confidence interval will also be large. To

more clearly illustrate this idea, suppose the model predicts a 95% confidence interval for a

particular length/site/year p̂ to be 0.2 to 0.4. Consider the difference between the resulting
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intervals on N if the associated n1 is 3 (7.5 to 15) or if the the associated n1 is 20 (50 to 100).

6.2 Modeled-p Performance When p1 and p2 Differ

Ignoring, for a moment, the associated intervals, let us consider the relative accuracy of

the Bayesian posterior mean and the modeled-p estimator. Since the modeled-p estimator

assumes p1lsy = p̂2lsy , it stands to reason that it will perform poorly if capture probability

varies between the first and second passes. For our simulated data, the largest differences

between first and second pass capture probabilities occurred in the Flowerpipe section in

1986, for which all length classes showed differences greater than 0.11. However, for each

length class, the 1986 modeled-p estimator for Flowerpipe showed good performance, as we

can see in the plots on the following page. This seems to indicate that differences between

p1lsy = p̂2lsy need to be fairly large (i.e. greater than 0.11) for this issue alone to result in

poor performance of the modeled-p estimator.

6.3 Estimator Comparison for Zero Recapture Count Events

As noted earlier, the primary motivation for using a Bayesian model for abundance estima-

tion is that Bayesian estimators are supposed to show better performance when recapture

numbers are small. Our motivation for developing the modeled-p estimator is that it may

show performance as good or almost as good as the Bayesian estimator, but with the added

benefit of being easier to understand and explain to researcher without a strong background
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in statistics. In the interest of exploring the relative performance of these two estimators,

we will examine in depth the Dam 1992 site/year, for which eight out of the 10 small length

classes had recapture numbers of zero in the simulated data. Caterpillar plots for the Dam

section are displayed below.
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Clearly, both the Bayesian and modeled-p estimators showed poor performance in 1992,

particularly in the middle two length classes. In the < 150 mm length class, one out of

two of the smaller associated length classes had a recapture count of 0, in the [150,250)

and [250,325) mm length classes, all of the associated smaller length classes had recapture

counts of zero, and in the >325 length class, none of the associated smaller length classes

had recapture counts of zero. Therefore, it appears that when all sub-length classes have

recapture counts of zero, both models struggle to produce good abundance estimates. To

further examine why these models are performing poorly, we will consider the associated

probability plots, also plotted below.
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Recall that the Bayesian model is attempting to model pcap, the probability of ever being

captured, while the modeled-p model is attempting to model the probability of capture on

the first pass. From these probability plots, we make two notable observations. First when

m = 0, both models are far over-estimating their respective targets. Second, for the length

classes in which the models are showing the poorest estimates of pcap and p1, the true capture
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probabilities are much smaller than in the other years for the Dam site. This is interesting

because it appears that the models are actually performing exactly as we had hoped: when a

recapture count of zero is observed, the models are using information pooled from other years

to estimate a reasonable probability of capture, instead of naively assuming it to be zero, as

the classical Petersen estimator does. However, this strategy does not work well in this case,

because the 1992 probabilities of capture in the Dam site are so unlike the other years for

that site. However, we see other length/site/years for which m = 0 and the models do a fine

job of estimating the probabilities of capture (such as [175,200)/Dam/2012). This seems to

happen when these capture probabilities are more similar to other capture probabilities for

the site in question. This suggests that it is not so much the recapture counts of zero that

are the problem, but the unusually small probabilities of capture.
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We believe the poor performance of both the modeled-p and Bayesian estimators in

site/years for which the probabilities of capture are unusually low is notable because it

suggests these models probably perform best when probabilities of capture are relatively

similar across years, and may perform quite poorly if probabilities of capture are very different

across years. However, when working with real data, there is no way of knowing which

situation is the truth. The best way to avoid the latter scenario is to carefully design a

study in which the sampling effort is as uniform as possible from year to year, while also

attempting to control for other variables that may affect the probability of capture.

7 Further Work

There are a variety of ways in which we could extend this work in the future. First, the

problems associated with the Petersen estimator are well known. Therefore, its compara-

tively poor performance is not surprising. It would be interesting to compare the modeled-p

and Bayesian estimators to a classical estimator with better properties than the Petersen

estimator.

Second, there are a variety of ways in which we could adapt our Bayesian model. For in-

stance, we chose to use only vaguely informative priors for our Bayesian estimator. However,

it seems reasonable to assume that researchers may be able to provide some amount of prior

information for at least some of the parameters in the model. Exploring the effect of infor-

mative priors, particularly on the precision of the Bayesian estimator, would be worthwhile.

23



We could also consider adjusting the structure of the Bayesian model slightly. Specifically,

our model specifies

logit(p1lsy) ∼ N(µls + αys, σp), σp ∼ Half Cauchy

logit(p2lsy) ∼ N(µls + αys, σp), σp ∼ Half Cauchy

µls ∼ N(β0s + β1slength, σs), σs ∼ Half Cauchy

αys ∼ N(0, σys), σys ∼ Half Cauchy

However, it may be interesting to explore the effect of either of the following modifications.

First we could define the logit transformed probabilities of capture to be equal to (µls + αys

and putting a normal distribution only on µls and αsy. Second, we could define µls to be

equal to β0s + β1slength and put normal distributions only on the logit transformed proba-

bilities and αsy. We believe either of these options would likely result in narrower posterior

intervals. The former would more closely resemble the modeled-p model.

Agresti and Caffo explore the effect of adding one success and one failure when comput-

ing confidence intervals for proportions (Agresti and Caffo, 2000). It may be worthwhile to

explore the impact a similar approach would have on the modeled-p and Petersen estimates.

We produced abundance estimates for our three chosen estimators using only one simu-

lated data set. It could be interesting to generate hundreds or thousands of data sets under

the same assumptions, and then produce estimates for each method and each data set. This

would give us a sense of how the performance of our estimators may vary due to natural
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sampling variability.

Finally, it could be worthwhile to explore the effect of changing some of the assumptions

under which we generated the data. For instance, we could induce more variability in the

capture probabilities both between sampling events within a site/year and across sites and

years. We could also examine the effect of smaller or larger true population sizes or different

distributions of lengths. Since the Petersen estimator is known to have larger bias when

samples are small, and both our modeled-p and Bayesian estimators are based on the Pe-

tersen estimator, exploring the bias in these estimators as it relates to sample size may be

enlightening.

8 Conclusions

Going through the process of simulating data and fitting different models provided a lot of

insight into this problem. In most length/site/year combinations, both the Bayesian and

modeled-p estimators performed fairly well. Additionally, we identified conditions under

which we believe these estimators may perform poorly. We examined the difference between

the uncertainty intervals associated with the Bayesian and modeled-p estimators, noting

that the posterior intervals are much more intuitive, while the uncertainty intervals for the

modeled-p estimator are difficult to interpret. Provided that it is reasonable to assume the

probability of capture is relatively uniform across years within a site, both estimators appear

to perform very well. Under this condition, the modeled-p estimator is a reasonable choice

25



for producing accurate point estimates from an easily understandable model.

It is worth noting the manner in which the data were simulated was in agreement with

the manner in which these two models were specified. Therefore, it is difficult, if not im-

possible, to assess whether the model fits the data well or the data fit the models well. The

assumptions under which we simulated the data were largely driven by the sampling design,

but there is always the possibility that factors exist which affect the probability of capture

or some other aspect of the problem that we are unaware of and therefore not accounting for.
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10 Appendix A

10.1 Dam Section Plots

30



31



32



10.2 Flowerpipe Section Plots
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10.3 Rereg Section Plots
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10.4 Troy Section Plots
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11 Appendix B

11.1 R Code

cat("model{

41



for(len in 1:10){ ##10 unique lengths

for(ste in 1:nSites){ ##4 unique sites

## each length class has its own effect on Prob across all years

mu.p[len, ste] <- beta0.p[ste] + beta1.p[ste] * (nLen[len])

len.eff.p[len,ste] ~ dnorm(mu.p[len, ste], tau.len.p)

##len.eff.p[len] <- len.eff.raw.p[len, ste] -

mean(len.eff.raw.p[]) + mu.p[len]

}

}

for(ste in 1:nSites){

beta1.p[ste] ~ dt(0, 10, 1) ## cauchy(0,10) on intercept (Gelman paper)

beta0.p[ste] ~ dt(0, 2.5, 1) ## cauchy(0,2.5) on slope (Gelman paper)

}

tau.len.p <- pow(sigma.len.p, -2) # tau = 1/sigma^2

sigma.len.p ~ dt(0, 1, 1)I(0,)

for(t in 1:nYears){ ##28 unique years

for(ste in 1:nSites){

year.eff.raw.p[ste, t] ~ dnorm(0, tau.year.p) ## year effects on prob's

year.eff.p[ste,t] <- year.eff.raw.p[ste,t] -

mean(year.eff.raw.p[,]) ## adj

}

}

tau.year.p <- pow(sigma.year.p, -2) # tau = 1/sigma^2

sigma.year.p ~ dt(0, 1, 1)I(0,) # informative prior on sigma

for(ndx in 1:nRows ){

##nRows is (number unique lengths) * (number unique site.years)

############################################################

### probabilities #########################################

############################################################

mu.x[ndx] <- len.eff.p[length[ndx], site[ndx]] + year.eff.p[site[ndx], year[ndx]]

x1[ndx] ~ dnorm(mu.x[ndx], tau.p)

x2[ndx] ~ dnorm(mu.x[ndx], tau.p)

p1[ndx] <- ilogit(x1[ndx])

p2[ndx] <- ilogit(x2[ndx])

## p1 and p2 are functions of length and year effects.

pCap[ndx] <- p1[ndx] + p2[ndx] - p1[ndx] * p2[ndx]

## prob of getting captured in one or both passes

pNeverCap[ndx] <- 1 - (p1[ndx] + p2[ndx] - p1[ndx] * p2[ndx])

############################################################

### population effects ####################################

############################################################
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totalCaps[ndx] ~ dpois(lambda[ndx])

lambda[ndx] ~ dgamma(.1, .1)

Npop[ndx] <- lambda[ndx]/pCap[ndx] # + epsilon[ndx] ##from Raftery paper

p.multi[ndx,1] <- p1[ndx] * (1 - p2[ndx]) ## prob capture history = (1,0)

p.multi[ndx,2] <- (1 - p1[ndx]) * p2[ndx] ## prob capture history = (0,1)

p.multi[ndx,3] <- p1[ndx] * p2[ndx] ## prob capture history = (1,1)

counts[ndx,1:3] ~ dmulti(p.multi[ndx,1:3], totalCaps[ndx])

}

tau.p <- pow(sigma.p, -2) # tau = 1/sigma^2

sigma.p ~ dt(0, 1, 1)I(0,) # informative prior on sigma

}", file="betterModel.txt")

###################################################################################

########################## Run for simulated data ################################

###################################################################################

set.seed(7951)

cmr.sim.data <- with(sim.data, list(nYears = 28,

totalCaps = n1 + n2 - m,

nRows = 540,

counts = cbind(n1-m, n2-m, m),

nLen = (unique(mean.len) -

mean(unique(mean.len)))/(2*sd(unique(mean.len))),

##scaled to have sd of .5 (Gelman paper),

nSites = 4,

length = length.cat3,

site = site,

year = year2))

warmup.sim.cmr <- jags.model("betterModel.txt", data=cmr.sim.data,

n.chains=3, n.adapt=2000, quiet=TRUE)

params <- c("Npop", "pCap")

samples.sim <- coda.samples(warmup.sim.cmr, params, n.iter=15000, quiet=TRUE)

43


