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Abstract

Whitebark Pine (Pinus albicaulis) plays an integral role in the Greater Yellowstone
Ecosystem (GYE). It has been often referred to as a keystone species due to the
extensive changes that the ecosystem would undergo if the species were to be lost.
Attributed to white pine blister rust (Cronartium ribicola) infection and mountain pine
beetles (Dendroctonus ponderosae), the decline of the whitebark population in the GYE
over the last few decades led to the establishment of the Interagency Whitebark Pine
Monitoring Program in 2004. Using data collected by the program from 2008 through
2016, we focused on white pine blister rust infections, using mixed logistic regression to
model the probability of transitioning from no infection to a canopy infection (Model
1) and modeling the probability of transitioning from a canopy infection to a bole
infection (Model 2). Explanatory variables included elevation, aspect, tree size, and a
time variable - the length of time the tree remained uninfected (Model 1) or the length
of time the tree remained canopy infected (Model 2). We found that the length of
time the tree remined uninfected and tree size were the most useful predictors in the
probability of transitioning from no infection to a canopy infection; while the length of
time the tree remained canopy infected and elevation were the most useful predictors
in the probability of transitioning from a canopy infection to a bole infection.
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Introduction

Whitebark pine (Pinus albicaulis) are conifers native to the subalpine zone1 of the Pacific
Northwest2 and northern Rocky Mountains. Often gnarled and twisted from the extreme
environments in which they grow, they are low in commercial value; however, their ecological
importance is invaluable. Growing on steep terrain and in poor soils, these trees facilitate snow
retention, necessary to the survival of many of the species throughout their ecosystem, and
create microhabitats for the establishment of plant species less adapted to such environments.
Their pine cone seeds serve as a high-energy food source for species such as the Clark’s
nutcrackers (Nucifraga columbiana), American red squirrels (Tamiasciurus hudsonicus), and
North American brown bears (Ursus arctos ssp.). Within the Greater Yellowstone Ecosystem3,
the cone production of the whitebark pines serves as the primary indicator of the brown bear
population’s survivorship and reproductivity each year (Greater Yellowstone Whitebark Pine
Monitoring Working Group 2011). In the past few decades, the whitebark pine population
has suffered drastic declines across its natural range, attributed to reasons such as climate
change, wildfires, mountain pine beetle (Dendroctonus ponderosae) infestations, and, the
focus of this analysis, white pine blister rust.

White pine blister rust is caused by a non-native fungal pathogen (Cronartium robicola)
originating in Asia. After being established in Europe in the 18th century via the planting
of very susceptible American white pines, the disease spread to North America in the early
1900s when seedlings grown in European nurseries were imported into the eastern United
States (Maloy 2001). In 1926, blister rust infection was first discovered on whitebark pine;
by 1945, it had spread across the GYE, reaching northwestern Montana in 1927, southern
Oregon in 1929, Glacier National Park in 1939, and southern Idaho in 1945 (Graphics, n.d.).

The infection requires to host species, bouncing between the whitebark pine and, most
commonly, a gooseberry plant (Ribes ssp.). The concern, however, lies with the whitebark,
because while the “rust is shed from the gooseberry plant when the plant naturally drops
its leaves in the autumn. . . one successful rust infection of a pine can persist and expand
for years”, with the potential to eventually kill the tree (Graphics, n.d.). The infection
can occur in the canopy of the tree or the bole of the tree4, with the infection in the bole
being considered more severe because of the higher threat of mortality. Due to the ecological
importance of the species, described above, the spread of the infection has evoked grave
concern. In this analysis, we wish to determine the predictors most valuable in the modeling
transition probabilities of the blister rust infection. We will consider two of the possible
transitions - the first from no infection to a canopy infection and the second from a canopy
infection to a bole infection.

1The subalpine zone refers to the biotic zone immediately below tree line in the PNW and Rocky Mountains.
2The Pacific Northwest a geographic region whose boundaries are defined by the Pacific Ocean on the

West and the Rocky Mountains on the East.
3The Greater Yellowstone Ecosystem (GYE) is 34,375 square miles spanning across northwestern Wyoming,

southwestern Montana, and eastern Idaho. It is “one of the largest nearly intact temperate-zone ecosystems
on Earth” (“Greater Yellowstone Ecosystem,” n.d.).

4The bole of the tree is where the trunk splits into the branches that form the canopy of the tree.
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Methods

Data Collection

The Greater Yellowstone Whitebark Pine Monitoring Working Group (GYWPMWG), com-
prised of affiliates of the U.S. Forest Service (USFS), the Bureau of Land Management (BLM),
the National Park Service (NPS), the U.S. Geological Survey (USGS), and Montana State
University (MSU), was established as a long-term monitoring program of Whitebark Pine
in the Greater Yellowstone Ecosystem. From 2004 to 2007 the different organization began
their collaborative work, establishing the sampling units for future field surveys.

A two-stage cluster design was used. In the first-stage, a simple random sample of 150
“whitebark pine dominated stands of approximately 2.5 hectares or larger” was taken from
the population of 10,770 stands identified in the GYE. In the second-stage, a sample of
ten-by-fifty meter transects was taken from within the randomly sampled stands. To sample
the transects, a simple random sample of five points was assigned to each of the sampled
whitebark pine stands. The first point of the sample was used as the “targeted mid-point” of
the transect to be sampled. A vector originating from the point was then randomly selected
to determine the ten-by-fifty meter transect. If no whitebark were captured by the transect,
the next sampled point was used as the “targeted mid-point”, and so on. During the four-year
establishment period, 176 transects were sampled and all whitebark pine trees 1.4 meters or
taller with a diameter at breast height5 (DBH) of at least one centimeter were permanently
marked (Greater Yellowstone Whitebark Pine Monitoring Working Group 2016). For 124 of
the stands only a single transect was sampled, however in the remaining 26 stands a second
transect was sampled to facilitate the exploration of within stand variability.

Visiting transects is logistically challenging and blister rust infection spreads very slowly so a
“rotating panel” sampling structure was used; the sampled transects were randomly assigned
to one of four panels. Each year field surveys were conducted on predetermined panels, with
all four panels being surveyed by the end of a four-year time step. The survey conducted was
either a “full survey”, in which both blister rust and life status were observed, or a “status
survey”, in which signs of mountain pine beetle and life status were observed. Our analysis
focused on the data from only the full surveys. Field surveys were conducted in 2016, the first
year of T3, however we will not include these observations as the data for the full four-year
time step are not available. Figure 1 summarizes the schedule of the surveys.

Variables of Interest

There is subjectivity in the identification of blister rust infection, so the status of blister rust
(in either the canopy or the bole) was recorded as “definitely infected”, “probably infected”,
and “uninfected”. These were then translated into a binary variable by merging “definitely
infected” and “probably infected” into the single category: “infected” (Greater Yellowstone

5Diameter at breast height is used as a measure of the tree’s age, with breast height in this study being
defined as 1.4 meters from the ground.
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Figure 1: Visitation schedule for rotating panel sampling design.

Whitebark Pine Monitoring Working Group 2011). The result was a binary response variable
(TransitionCanopy) for Model 1, and a second binary response variable (TransitionBole) for
Model 2.

Discussions with agency personnel identified three variables of interest for modeling both
types of transition probabilities: DBH, Elevation, and Aspect.

• DBH is the diameter at breast height of the tree measured in centimeters.
• Elevation is the elevation of the tree measured in meters.
• Aspect is the cardinal direction that the slope surrounding the tree is facing, or,

equivalently, the cardinal direction that water would flow from the tree, measured in
radians.

Two temporal explanatory variables were defined: the first measuring the number of years
that the tree was infection free prior to transitioning to a canopy infection (TimeUninfected)
and the second measuring the number of years that a tree had a canopy infection before
transitioning to a bole infection (TimeCanopyInfected).

TransitionCanopy and TimeUninfected were constructed simultaneously to be used in the
first model, and TransitionBole and TimeCanopyInfected were constructed simultaneously to
be used in the second model. This simultaneous construction is necessary, because number of
observations differs depending upon the model being considered.

To construct each pair of variables, four cases had to be considered - observations with no
NAs6, observations with NAs in T0, observations with NAs in T1, and observations with
NAs in T2. Observations with NAs in more than one time-step were not considered because
there is not enough information to construct either pair of variables. Figures 2, 3, 4, and 5

6NAs exist in the data due to reasons such as, but not limited to, a tree having a DBH of less than one
centimeter during the establishment period, the tree being missed in a field survey, or the tree dying.

5



describe the construction of TransitionCanopy and TimeUninfected under each of the four
cases, and, similarly, Figures 6, 7, 8, and 9 describe the construction of TransitionBole and
TimeCanopyInfected under each of the four cases. For the transition variables, a 0 indicates
no transition, a 1 indicates a transition, and a -1 indicates that the observation was removed
from the dataset for that particular model. For the time to transition variables the numerical
value indicates the number of years that the tree remained uninfected (Model 1) or canopy
infected (Model 2), with a -1 also indicating that the observation was removed from the
dataset for that particular model. In Figure 6, there are two weights of lines with values for
the variables in either standard-font or bold-font to correspond to the differently weighted
lines. These represent two different paths that met the criteria for the TransitionBole and
TimeCanopyInfected variables in the case of no NAs. After the construction of both pairs of
variables, 2,805 observations remained for Model 1 and 421 observations remained for Model
2.

Figure 2: Construction of TransitionCanopy and TimeUninfected for observations with no
NAs.

Aspect is a circular variable and standard statistical summary measures do not apply. To
illustrate this, consider a case when there are two observed directions, 5 degrees and 355
degrees. A standard summary statistic would be the mean, in this case 180 degrees; however,
this is clearly a poor summary measure, as the two directions, in practice are only 10 degrees
apart. For this reason, we cannot simply include aspect as a linear predictor in our models.
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Figure 3: Construction of TransitionCanopy and TimeUninfected for observations with NAs
in T0.

Figure 4: Construction of TransitionCanopy and TimeUninfected for observations with NAs
in T1.
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Figure 5: Construction of TransitionCanopy and TimeUninfected for observations with NAs
in T2.

A well-accepted solution (Fisher 1993) is to instead include both the sine and cosine of aspect
as predictors in the model. This can be explained using the relationship between the polar
coordinate system and the rectangular coordinate system. Recall that:

• The polar coordinate system describes a point on a plane with (r, α), where r is the
distance to the origin and α is the angle from the origin.

• The rectangular coordinate system describes a point on a plane with (x, y), where x is
the horizontal distance from the origin and y is the vertical distance from the origin.

Consider Figure 10 (Al-Daffaie and Khan 2017).

We see that we can easily move from polar coordinates to rectangular coordinates (and vice
versa) using:

x = rcos(α)

y = rsin(α)

In the context of circular variables, magnitude is not of interest, so we let r = 1, and we have:

x = cos(α)

y = sin(α)

Therefore, we can describe the circular angle measurement with the two continuous variables
formed by the translation from the polar to rectangular-coordinate system (Al-Daffaie and
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Figure 6: Construction of TransitionBole and TimeCanopyInfected for observations with no
NAs.
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Figure 7: Construction of TransitionBole and TimeCanopyInfected for observations with
NAs in T0.

Figure 8: Construction of TransitionBole and TimeCanopyInfected for observations with
NAs in T1.
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Figure 9: Construction of TransitionBole and TimeCanopyInfected for observations with
NAs in T2.

Figure 10: Relationship between polar and rectangular coordinate systems.
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Khan 2017). It is important to recognize that the angle, α, is described by both x = sin(α)
and y = cos(α), so, although they will be fit as two separate predictors, when it comes to
model selection they must be added/removed as a pair.

Generalized Linear Mixed Models

An “ordinary linear regression model uses linearity to describe the relationship between
the mean of the response variable and a set of explanatory variables” when the response is
assumed to be normally distributed. In the context of modeling transition probabilities, the
response is binary - indicating transition or no transition - and follows a binomial distribution.
Thus, we turn to generalized linear models which “extend standard linear regression models
to encompass non-normal response distributions” (Agresti 2015), specifically members of the
exponential dispersion family of which the binomial distribution belongs.

A generalized linear model is comprised of three components: the random component, the
linear predictor, and the link function.

• The random component defines the response and its distribution:

y = (y1, ..., yn)ᵀ

• The linear predictor describes the linear relationship of the predictors:

Xβ = β0 + β1x1 + ...+ βpxp

• The link function, g, relates the mean of the response to the linear predictor:

g(E[Y ]) = Xβ

Like an ordinary linear regression model, in the context of GLMs it is still assumed that the
observations are independent. Considering the data being analyzed, this assumption is not
reasonably satisfied due to the cluster design of the sampling units. Recall that the individual
whitebark pine trees from which the variables were measured are clustered by the randomly
sampled transects. Thus it unreasonable to assume that all of the trees are independent,
because some trees are related by transect.

To account for this correlation among the responses, we can model the transects through the
inclusion of a random effect (Agresti 2015). A generalized linear model with a random effect
(or random effects) is called a generalized linear mixed model (GLMM). This model is defined
by the same three components of a GLM; however, they are modified to accommodate the
inclusion of the random effect.

• The random component defines the response and its distribution conditional on the
random effects u:

y = (y1, ..., yn)ᵀ
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• The linear predictor describes the linear relationship of the fixed and random effects:

Xβ +Zu

• The link function, g, relates the mean of the response conditional on the random effects
to the linear predictor:

g(E[Y ]) = Xβ +Zu

It is assumed that the observations, are independent conditional on the random effects, which
is reasonable to assume for the data analyzed. It is also assumed that the random effects are
normally distributed with a mean of zero and constant variance.

Having determined that a GLMM is appropriate, a link function appropriate to the distribution
of the response must be chosen. In this analysis, the response for both transitions of interest
are binary, yi|ui ∼ Binomial(πij). Two link functions are typically used for binary response
variables: the logit and probit. We will use the logit link as it is more appropriate for
our inferential purposes, however “in practice, probit and logistic regression models provide
similar fits” (Agresti 2007, 72). Using the logit link function, log( πij

1−πij
), we can refer to our

GLMM as a logistic mixed model.

Results

Model 1: No infection to a canopy infection

The transition from no infection to a canopy infection was considered first. For this model the
response was the canopy transition binary variable, and the set of predictors considered was
length of time the tree was uninfected in years, elevation in kilometers7, DBH in centimeters,
the sine of the aspect variable in radians, and the cosine of the aspect variable in radians.
When determining all possible linear subsets of the main effects of the predictors, there are
only four predictors in practice as the two aspect variables must be added and removed
as a pair. This equates to only fifteen linear subsets, so the logistic mixed model for each
subset was considered. Only the main effects of the predictors were considered in the models,
because there were no apriori expectations of interactions or quadratic effects.

Using the glmer() function in the lme4 package (Bates et al. 2015), R studio (RStudio Team
2015) was used to fit each of the candidate models.

The Akaike Information Criterion (AIC) was of primary consideration in the selection of
the top candidate models and the selection of the final model used to make inferences. This
criterion evaluates the fit of a model by comparing simpler models to the most complex or

7Upon fitting the most saturated model, it was discovered that the glmer() function was unable to fit a
model including elevation as recorded in meters. The measurements of this variable are so large in comparison
to those of the other variables, identifiability issues arose when fitting the model. As a result, the variable
was converted to kilometers.
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full model in the set of candidate models, with lower AIC indicating a better fit. However,
this criterion must be used with caution as the “best” model in the set based upon AIC may
fit poorly if all of the models in the set fit poorly. The ∆AIC is often considered in the place
of the AIC as it is easier to understand in the context of how models compare across a set.
It is calculated by subtracting the smallest AIC from the set of candidate models from the
AIC of the candidate model in consideration.

model time uninfected elevation DBH sin(aspect) cos(aspect) ∆AICi wi

A X X 0.00 0.5352
B X X X 1.04 0.3181

Table 1: Summary of top candidate models for the prob-
ability of transitioning from no infection to a canopy
infection.

The last column of Table 1 includes the model weights, which can be understood as “the
weight of evidence in favor of model I being the actual. . . best model for the situation at
hand given that one of the R models must be the. . . best of that set of R models” (Burnham
and Anderson 2002). We choose to focus only on these top two candidate models because
just over 85% of the weight is held by these models, out of the entire set of fifteen models8.

The assumptions were checked and found to be reasonably satisfied for both models; the
details of which can be found in the Appendix. Table 2 reports the parameter estimates
of each model followed by the associated standard errors in parentheses. We see that the
parameter estimates for the variables common to both models are similar in both sign and
magnitude with identical standard errors. σ, the estimated variance of the random transect
effect, is also similar, differing by only 0.0030 between the two models.

parameter Model A Model B

intercept 2.9082 (0.3159) 5.4391 (2.6159)
time uninfected −1.0126 (0.0547) −1.0107 (0.0547)
elevation −0.9077 (0.9294)
DBH 0.0721 (0.0085) 0.0728 (0.0085)
sin(Aspect)
cos(Aspect)

8The next best candidate model had a weight of 0.0894.
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parameter Model A Model B

σ 1.3150 1.3120

Table 2: Summary of parameter estimates and standard
errors for Model A and Model B.

Before focusing on the “best” model to make inferences, we explore the predictive power
of the top two candidate models by testing their ability to predict the observed transitions
(or lack of) in the original data. With the models predicting probabilities of transitioning
(values ranging anywhere between 0 and 1), a threshold must be chosen as to how high a
predicted probability must be for that tree to be considered as having transitioned. We
will use the threshold as indicated by the data9, calculated to be 0.1141, and consider the
sensitivity10 and specificity11 of the two models. Table 3 summarizes the results. With the
same sensitivity and nearly the same specificity, the difference in the predictive power of
these models is negligible.

model sensitivity specificity

A 0.8531 0.8571
B 0.8531 0.8567

Table 3: Sensitivities and specificities of top candidate
models for the probability of transitioning from no infec-
tion to a canopy infection.

Using Model A (the “best” model as judged by AIC), we will make inferences about the
effect of the variables on the odds of transitioning. With the probability of success defined as
π, the odds of success are π

1−π (Agresti 2007, 28).

Our theoretical model is:
9We will determine the proportion of trees that did transition from no infection to a canopy infection

and use this proportion as the threshold. Any predictions with a probability of transitioning less than this
threshold will be considered a failure (the tree did not transition) and any probability of transitioning greater
than this threshold will be considered a success (the tree did transition).

10Sensitivity is the true positive rate - of the trees that did transition, the proportion of those trees that
were predicted to have transitioned.

11Specificity is the true negative rate - of the trees that did not transition, the proportion of those trees
that were predicted to have transitioned.
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log( πij
1− πij

) = (β0 + uij) + β1TimeUninfectedij + β2DBHij

We see that exponentiating both sides gives us an equation relating the parameter estimates
to the odds (Agresti 2007, 104):

πij
1− πij

= e(β0+uij)(eβ1)T imeUninfectedij (eβ2)DBHij

Therefore, the exponentiated parameter estimates can be interpreted as a multiplicative
change in the odds specific to the cluster uj, conditional on the other variables in the model.
Table 4 summarizes the exponentiated estimates and approximate 95% confidence intervals for
the fixed effects of Model A. The units of the variables are years and centimeters, respectively.

variable lowerbound point estimate upperbound

time uninfected 0.1956 0.3633 0.6747
DBH 1.0570 1.0748 1.0928

Table 4: Exponentiated approximate 95% confidence in-
tervals and parameter estimates for the fixed effects.

It is very important to remember that these estimates are transect specific, as indicated in
the following interpretations of the confidence intervals.

1. We are 95% confident that within a given transect each additional year that a tree
remains uninfected is associated with between a 32.53% and 80.44% decrease in the
likelihood that the tree will transition from having no infection to having a canopy
infection, after accounting for the DBH of the tree.

2. We are 95% confident that within a given transect, each additional centimeter in the
DBH of a tree is associated with between a 5.70% and 9.28% increase in the likelihood
that the tree will transition from having no infection to having a canopy infection, after
accounting for the length of time the tree has remained uninfected.

Model 2: Canopy infection to a bole infection

The transition from a canopy infection to a bole infection was considered next. For this model
the response was the bole transition binary variable, and the set of predictors considered
was length of time the tree was canopy infected in years, elevation in kilometers, DBH in
centimeters, the sine of the aspect variable in radians, and the cosine of the aspect variable in
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radians. Again, there are only four predictors in practice, equating to fifteen linear subsets, so
the logistic mixed model for each subset was considered. Only the main effects were included
for the same reason as explained for Model 1.

Using the same packages and functions in R studio (RStudio Team 2015) as with the first
model, each of the candidate models was fit. Similar to Model 1, the AIC was of primary
consideration in the selection of the top candidate models and the selection of the final model
used to make inferences. Table 5 summarizes the top three models ordered from lowest to
highest ∆AIC.

model time canopy infected elevation DBH sin(aspect) cos(aspect) ∆AICi wi

A X X 0.00 0.5415
B X X X 1.88 0.2117
C X X X X 3.20 0.1094

Table 5: Summary of best candidate models for the prob-
ability of transitioning from no infection to a canopy
infection.

We choose to focus on the top three candidate models because, like the top candidate models
in Model 1, just over 85% of the weight is held by these models, out of the entire set of fifteen
models12.

The assumptions were checked and found to be reasonably satisfied for both models; the
details of which can be found in the Appendix. Table 6 reports the parameter estimates of
each model followed by the associated standard errors in parentheses. As we saw in Model 1,
the parameter estimates for the variables common to all three models are similar in both
sign and magnitude with similar associated standard errors. σ, the estimated variance of the
random transect effect, is also similar across the three models.

parameter Model A Model B Model C

intercept 10.2222 (3.5590) 10.1250 (3.5863) 10.6597 (3.5807)
time canopy infected −0.3834 (0.07625) −0.3845 (0.0765) −0.3824 (0.0760)
elevation −3.1447 (1.2782) −3.1401 (1.2849) −3.2800 (1.2821)
DBH 0.0047 (0.0134)
sin(aspect) 0.0652 (0.2528)

12The next best candidate model had a weight of 0.0594.
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parameter Model A Model B Model C

cos(aspect) 0.2622 (0.2996)
σ 1.2180 1.229 1.193

Table 6: Summary of parameter estimates and standard
errors for Model A, Model B, and Model C.

We again explore the predictive power of the top candidate models by testing their ability
to predict the observed transitions (or lack of) in the original data. We will again use the
threshold as indicated by the data, calculated to be 0.3919 for the Model 2 data, and consider
the sensitivity and specificity of the two models. Table 7 summarizes the results. All three
models have nearly the same sensitivity and specificity, indicating comparable predictive
powers.

model sensitivity specificity

A 0.8424 0.7227
B 0.8428 0.7344
C 0.8303 0.7305

Table 7: Sensitivities and specificities of top candidate
models for the probability of transitioning from a canopy
infection to a bole infection.

Using Model A (the “best” model as judged by AIC), we will make inferences, again, about the
effect of the variables on the odds of transitioning following the same procedure described for
Model 1. Table 8 summarizes the exponentiated estimates and approximate 95% confidence
intervals for the fixed effects of Model A. The units of the variables are years and 100 meters13,
respectively.

13A one kilometer change in elevation is not meaningful in this ecological context, so the estimates for
elevation were re-scaled to be in the units of 100 meters.
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variable lowerbound point estimate upperbound

time canopy infected 0.5864 0.6810 0.7908
elevation 0.5684 0.7300 0.9381

Table 8: Exponentiated approximate 95% confidence in-
tervals and parameter estimates for the fixed effects.

Again, it is important to remember that these estimates are transect specific, as indicated in
the following interpretations of the confidence intervals.

1. We are 95% confident that within a given transect each additional year that a tree
remains canopy infected is associated with between a 20.92% and 41.36% decrease in
the likelihood that the tree will transition from having a canopy infection to having a
bole infection, after accounting for the elevation of the tree.

2. We are 95% confident that within a given transect, each additional 100 meters in the
elevation of a tree is associated with between a 6.19% and 43.16% increase in the
likelihood that the tree will transition from having a canopy infection to having a bole
infection, after accounting for the length of time the tree has remained canopy infected.

Discussion

While two “final” models were chosen for inferential purposes, the other top candidate models
tell similar stories and could justifiably be used for inference as well. For each of the two
transitions modeled, there is a consistency in the variables deemed important. For Model 1
(the transition from no infection to a canopy infection) the length of time the tree remained
uninfected and DBH of the tree appeared in both of the top candidate models; and, for Model
2 (the transition from a canopy infection to a bole infection) the length of time the tree
remained canopy infected and elevation appeared in all three of the top candidate models.

The final model chosen for inference for the transition from a canopy infection to a bole
infection did not include DBH. However, the next best candidate model (in terms of ∆AIC)
did contain this predictor. When this next best model is used to make inferences, an interesting
result arises. Recall, it was found that, for the transition from no infection to a canopy
infection, an increase in DBH was associated with an increase in the odds of transitioning.
However, in the case of the transition from a canopy infection to a bole infection, an increase
in DBH is associated with a decrease in the odds of transitioning. This inverse relationship
seems counter-intuitive, however discussions with agency personnel confirmed that this is a
well-hypothesized idea that has never been quantified. It is thought that a larger tree has a
larger canopy, so it is more likely to catch the spores of the fungus in its foliage, resulting in
a canopy infection; but, a larger tree also has more distance between its canopy and bole, so
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the infection is less likely to transition from the canopy to the bole. The quantification of
this hypothesis is an exciting outcome of this analysis.

There is one main area for improvement in this analysis, involving the two time-infected
variables. These were fit as continuous variables, however due to the rotating-panel design of
the surveys, they were more discrete than continuous (only taking on the values 0, 4, and 8).
They were not included as such because identifiability issues arose when fitting the models.
Therefore, caution should be taken when using the interpretation of the parameter estimates
for these variable; a one year increase is not something that was ever recorded.

Finally, there are many options for future research. Perhaps the most interesting involves
the subjectivity in the identification of blister rust infection. As described previously, the
categories of “probably infected” and “definitely infected” were merged into the single binary
variable “infected”. If models were fit using only the “definitely infected” trees, would the
results change? Such knowledge could shed light on how much importance should placed on
the results of past research and greatly impact any future research on whitebark pine blister
rust infection in the GYE.
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Appendix

When using a logistic model with a random intercept, it is assumed that the observations are
independent conditional on the random intercept and that the random intercepts are normally
distributed with a mean of zero and constant variance. We have previously addressed the
assumption of independence, and there is no viable way to assess assumption of equal variance;
however, we will now address the assumption of normality and assess the general fit of the
model through consideration of the residuals. This was done for each of the top candidate
models.

Functions in the packages sjPlot (Lüdecke 2017b) and sjmisc (Lüdecke 2017a) were used to
construct the Normal QQ plots used to assess the assumption of the normally distributed
random intercepts. In this plot the random intercepts are plotted against the quantiles of
the normal distribution. If the assumption is reasonably satisfied, the random intercepts will
appear to follow the line formed by the quantiles of the normal distribution.

Functions built-in to R (R Core Team 2017) were used to construct the boxplots of the
residuals. If the model fits reasonably well, the residuals will be small. A common rule-of-
thumb is that residuals over three units from zero are considered to be large. Just as with
ordinary linear regression, large residuals can be indicative of missing important covariates,
missing higher-order terms of the included covariates, and/or missing important interactions
between the included covariates.

Diagnostics for Model 1

The assumption of normality for Models A and B was checked using Figures 11 and 13,
respectively. We see that this assumption does appear to be reasonably satisfied for both
models. The fit of these models was considered using Figures 12 and 14, respectively. For
both candidate models, we see that the residuals are very, very large, with nearly identical
distributions. Future analysis will involve further model building to address this issue.

Diagnostics for Model 2

The assumption of normality for Models A, B, and C was checked using Figures 15, 17,
and 19, respectively. We see that this assumption does appear to be reasonably satisfied
for all three models. The fit of these models was considered using Figures 16, 18, and 20,
respectively. For all three candidate models, we see that the residuals are small, again, with
nearly identical distributions. As a result, future analysis will not involve further model
building.
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Figure 11: Normal QQ Plot used to assess the normality of the random intercepts in Model
1-A.
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Figure 12: Boxplot of residuals for Model 1-A.
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Figure 13: Normal QQ Plot used to assess the normality of the random intercepts in Model
1-B.
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Figure 14: Boxplot of residuals for Model 1-B.
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Figure 15: Normal QQ Plot used to assess the normality of the random intercepts in Model
2-A.
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Figure 16: Boxplot of residuals for Model 2-A.
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Figure 17: Normal QQ Plot used to assess the normality of the random intercepts in Model
2-B.
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Figure 18: Boxplot of residuals for Model 2-B.
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Figure 19: Normal QQ Plot used to assess the normality of the random intercepts in Model
2-C.
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Figure 20: Boxplot of residuals for Model 2-C.
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