
Montana State University

Department of Mathematical Sciences

Writing Project

Predicting the PITCHf/x Pitch
Classifier

Author:
Christian Stratton

Supervisors:
Dr. Andrew Hoegh

Dr. Jennifer Green

Spring 2018

A writing project submitted in partial fulfillment
of the requirements for the degree

Master’s of Science in Statistics

APPROVAL

of a writing project submitted by

Christian Stratton

This writing project has been read by the writing project advisor and has
been found to be satisfactory regarding content, English usage, format, ci-
tations, bibliographic style, and consistency, and is ready for submission to
the Statistics Faculty.

Date Andrew Hoegh
Writing Project Advisor

Date Jennifer Green
Writing Project Advisor

Date Mark C. Greenwood
Writing Projects Coordinator

Contents

1 Introduction 3
1.1 Motivating Model-Based Pitch Prediction 4

1.1.1 A Motivating Example 5
1.2 Data Collection . 6

1.2.1 The PITCHf/x Database 6
1.2.2 The pitchRx Package and Data Cleaning 7

2 Background Modeling Techniques 10
2.1 Bayesian Computational Methods 10

2.1.1 The Gibbs Sampler . 12
2.1.2 The Metropolis-Hastings Algorithm 15
2.1.3 Mixed Sampling Methods 16
2.1.4 Convergence Diagnostics 17

2.2 Bayesian Hierarchical Modeling 19
2.2.1 The Normal Hierarchical Model 20
2.2.2 The Multivariate Normal Hierarchical Model 21
2.2.3 Normal Hierarchical Regression 22
2.2.4 Shrinkage Estimators 22

3 Methods 23
3.1 Multinomial Regression . 24

3.1.1 Hierarchical Multinomial Regression 24
3.2 The Kershaw Model . 25

3.2.1 Exploratory Data Analysis 26
3.2.2 Model Specification . 30
3.2.3 The Block Metropolis-within-Gibbs Sampler 32

4 Simulation Study 35
4.1 Generating Hierarchical Multinomial Data 35
4.2 The Bayes Factor . 37
4.3 Results . 39

5 Kershaw Analysis 40
5.1 Model Comparison . 40
5.2 Convergence Diagnostics . 41

5.2.1 Assessing Model One Convergence 41

1

5.2.2 Assessing Model Two Convergence 44
5.3 Results . 45

6 Conclusion 46
6.1 Example Revisited . 46
6.2 Further Investigations . 47
6.3 Closing Thoughts and Acknowledgments 48

7 References 49

8 Appendix - R Code 52

2

Abstract

In Major League Baseball (MLB), the pitcher is often regarded as
one of the most influential players on the team; a dominant pitcher
has the ability to shutdown an opposing team and control the game.
As a result, the ability to predict the next pitch can give a team a
considerable competitive advantage; so much so, that controversy has
recently developed in the MLB around teams attempting to identify
signals exchanged between the opposing pitcher and catcher that relay
information regarding the type of the next pitch to be thrown. And
while the MLB has officially prohibited attempts to steal signs from
opposing teams, their recent decision to allow iPads in the dugout has
opened the door for the use of predictive modeling techniques in base-
ball. The MLB tracks data on every game played, which is stored in an
online database known as the PITCHf/x database. The aim of this re-
search is to build a model capable of predicting the pitch type classifier
in the PITCHf/x database. A Bayesian hierarchical nominal multi-
nomial regression model was fit to pitch data on Clayton Kershaw
scraped from the PITCHf/x database; pitches were clustered based
on the catcher calling the pitch. Predicted pitch type probabilities
were compared to those from this model’s non-hierarchical counter-
part using a conditional Bayes factor. The analyses showed that the
hierarchical model provided a better description of the data. The util-
ity of this model is discussed in this article and practical applications
of the results are explored. A simulation study on the advantages of
hierarchical modeling is also presented.

1 Introduction

In the fall of 2017, controversy rocked Major League Baseball (MLB) as the

number one seeded Boston Red Sox were accused of using electronic devices

to “steal” signals exchanged between the opposing pitcher and catcher that

relayed information regarding the type of the next pitch to be thrown; this

act, known as “sign stealing,” has a rich heritage in American baseball. Since

the advent of the league in 1869, teams have been attempting to steal signs

3

from the opposing team to gain a competitive edge (Schmidt, 2017). In

American baseball, the pitcher is often regarded as the most influential player

on the field; a dominant pitcher single-handedly has the ability to prevent an

opposing team from scoring, an ability unique to that position. Therefore,

knowing what pitch could be thrown next, and thereby negating some of that

pitcher’s dominance, can give a team a serious competitive edge.

The purpose of this research is to build a model capable of predicting

the next pitch thrown by an MLB pitcher based on covariates that describe

the current state of the game. In this section, we begin by motivating a

model-based approach to pitch prediction and conclude with a description of

the data collection and cleaning process.

1.1 Motivating Model-Based Pitch Prediction

The “sign stealing” stealing controversy discussed above suggests that there

is a desire in the league to predict the next pitch, but is there a means to

do so? Up until late in the 2017 season, teams were not allowed to use

electronics to gain a competitive edge. However, in a recent decision by the

MLB, each team is allowed an Apple iPad in the dugout (Novy-Williams,

2016). And while the MLB still expressly prohibits the use of electronics for

communication (i.e., sign stealing), access to such a computing device opens

the door for model-based pitch prediction, if it can be accomplished in real

time. Therefore, there is a practical motivation for the development of a

model capable of predicting the next pitch to be thrown.

4

Furthermore, there is a lot of money in the MLB. The 2017 World Series

winners made over $27.6 million in post season earnings. So there is not

only a desire for the development of a pitch predicting model and a means

to implement it, but also a very practical motivator for the creation of such

a model.

1.1.1 A Motivating Example

To further motivate the need for a pitch predicting model, we consider a

specific example where such a model could have been of use. On October

13th of 2016, the Washington Nationals met the Los Angeles Dodgers for

game five of the National League Divisional Series (NLDS). The NLDS is

the quarterfinal series of the World Series tournament, and is a best of five

series in which the team that wins three games advances to the semifinals.

We pick up the story in the bottom of the ninth inning, the last inning

of the game. The Dodgers lead the Nationals 4-3, and the Nationals were up

to bat fighting to keep their World Series hopes alive. The first batter, Trea

Turner, struck out swinging, giving the Dodgers the first of three required

outs to end the game. The next two batters walked, putting the tying run

on second base and the winning run on first base. At this point in the game,

the Dodgers decided to bring in their ace pitcher, Clayton Kershaw, who

is widely regarded as one of the most dominant pitchers of the modern era

(Crasnick, 2018).

The first batter, Daniel Murphy, popped out to second base giving the

5

Dodgers the second out of the inning, just one away from ending the game.

And so, with the game and the Nationals’ World Series aspirations on the

line, Wilmer Difo found himself up to bat. He fought Kershaw to a 1-1 count,

before taking a strike on Kershaw’s slider, bringing Difo to a 1-2 count, just

a single strike away from ending the game. And so for Difo, the pivotal

question and the focus of this research, is: “What is the next pitch?”

This is a question we will attempt to answer over the course of this paper

through the development of a pitch prediction model. However, to fit such a

model, we first need data to build it upon.

1.2 Data Collection

American baseball has a reputation for meticulously tracking descriptive

statistics; a reputation that is embodied in their PITCHf/x database. In

this section, we describe the PITCHf/x database, how we scraped the data

used in our analysis from the database, and the data cleaning process.

1.2.1 The PITCHf/x Database

PITCHf/x is a term for the system of cameras Major League Baseball Ad-

vanced Media (MLBAM) uses to track the flight pattern of pitches at every

MLB game (based on metrics like curvature, vertical drop, horizontal and

vertical location over home plate, and many others). These measurements,

and a wealth of other information including, but not limited to, longitudinal

data on each player in the league, box-scores for every game played each

6

season, commentary by announcers, etc., are stored in .xml format on the

publicly available PITCHf/x database website. The data are structured in

a hierarchical framework, where there exist clear parent-to-child relation-

ships. For example, individual player stats are nested within teams, which

are nested within games, which are nested within days, etc. One particularly

useful identifier in the database is the game identification link (GID), which

references the web page in the database that contains the pitch-by-pitch in-

formation for that particular game (Sievert, 2014).

Within the database are variables denoting the type of pitch thrown and

the count associated with that pitch, which form the basis of the model we

chose to fit. These variables, and others, are discussed in greater detail in

section 3.2, where we provide the details of the exact pitch prediction model

we fit. Next, we consider how we scraped the data from the PITCHf/x

database into a format suitable for model building.

1.2.2 The pitchRx Package and Data Cleaning

To scrape the data into a usable format, we used a modified version of the

scrape function in the pitchRx R package, developed by Carson Sievert (Siev-

ert, 2014). By default, this function references a GID, and scrapes the pitch-

by-pitch information into an R data frame object. In addition to this pitch-

by-pitch information, we were interested in including batter information in

our model. To do so, we modified the scrape source code to also pull batter

information into the data frame. After modifying the function, we scraped

7

data on every game played between August 2008 and August 2014.

Once we had scraped all these data into an SQL database, we decided to

focus our pitch predicting model on Clayton Kershaw, the pitcher described

in the motivating example. We chose to do so for a number of reasons. As

we mentioned above, Kershaw is often regarded as one of the most prolific

pitchers still active in the MLB, so we were interested in trying to gain in-

sight into what makes him such a dominant player. Furthermore, it seems

reasonable to believe his dominance may arise through thoughtful pitch se-

quencing, making him a prime candidate for a model such as this. And

finally, he played a large role in the 2017 World Series, making him one of

the more recognizable pitchers for this project.

Once we restricted our focus to Kershaw, there was a large amount of data

cleaning to be done. We decided to throw out any all-star games he played in;

in these games, Kershaw throws to a myriad of different catchers that he does

not see in the regular season. Because we chose to consider a hierarchical

model based on the catcher to whom Kershaw was throwing (see section 3.2),

we did not want to include these catchers as members of the hierarchy. Over

the course of his career, he may have only thrown 20 or less pitches to some

of them, providing limited information about the relationship between pitch

type probabilities and the covariates for those particular catchers.

We then identified the catcher to whom each pitch was thrown in the

dataset. This information was not available directly through the scrape func-

tion, so we built a data frame that provided the catcher by GID and then

8

merged that data frame with the pitches data frame available through the

scrape function.

Next, we removed any observations in which the pitch type classifier was

missing, or classified as an intentional or unintentional walk. While these

cases could themselves make for an interesting analysis, they made up less

than one percent of the data, and were not relevant to the goal of this re-

search.

Finally, we created additional predictor variables, such as a previous pitch

type classifier. This particular predictor presented its own challenges, as we

did not want to carry over the previous pitch type between at-bats, so care

had to be taken when creating this variable to ensure that the previous pitch

type for the first pitch of each at-bat was recorded as “none.” With the data

scraped and appropriately cleaned, we turned our attention to fitting the

model itself.

In section 2, we outline background modeling techniques and describe

some relevant Bayesian computational methods. In section 3, we describe

in detail the particular model we fit to these data, and discuss the sampler

used to fit that model. The fourth section of this paper provides a simulation

study to demonstrate the advantages of hierarchical modeling and in sections

5 and 6, we discuss the results of the Kershaw analysis.

9

2 Background Modeling Techniques

In this section, we begin by outlining some of the more common computa-

tional methods used in Bayesian statistics, methods upon which we developed

our sampler for the Kershaw model. We then discuss a number of common

Bayesian models that provide a foundation for the model we fit to the Ker-

shaw data.

2.1 Bayesian Computational Methods

In Bayesian statistics, inference is driven by the posterior distribution of the

unknown parameters; this posterior distribution is a function of the likelihood

of a sampling model for the observed data and prior understanding of the

unknown parameters. That is, if we let p(y|θ) denote the likelihood for some

sampling model and p(θ) denote the prior distribution on the unknown vector

of parameters θ, then, by Bayes’ rule, the posterior distribution is given by:

p(θ|y) =
p(y|θ)p(θ)∫

Θ
p(y|θ)p(θ)dθ

(1)

In special cases, often when conjugate priors are placed on the unknown

parameters, a closed form solution for this posterior distribution is available

(Hoff, 2010).

Definition 2.1. Conjugate

A class P of prior distributions p(θ) is called conjugate for a class F of

10

sampling distributions p(y|θ) if p(θ) ∈ P and p(θ|y) ∈ P ∀ p(y|θ) ∈ F .

A classical example of a model for which a closed form posterior distribu-

tion exists is the beta-binomial model; in this setting, the sampling model is

binomial with an unknown probability parameter θ. If we place a beta prior

distribution on θ, it can be shown the posterior distribution of θ is also of the

beta family. That is, given the following complete description of the model:

y1, ..., yn ∼ binomial(1, θ)

θ ∼ beta(α, β)

(2)

It can be shown that

θ|y1, ..., yn ∼ beta

(
n∑
i=1

yi + α, n−
n∑
i=1

yi + β

)
(3)

Because the prior and posterior distributions are of the same family, the

beta distribution is considered a conjugate prior for this sampling model.

This relationship leads to straightforward calculations of the posterior distri-

bution. However, in many cases, a closed form solution is not available. In

such cases, we resort to computational methods that approximate the poste-

rior distribution by sampling from this unknown distribution using iterative

procedures.

11

2.1.1 The Gibbs Sampler

The Gibbs sampler is one of the most common choices of sampling algo-

rithms, as it is one of the more efficient sampling algorithms currently avail-

able. The Gibbs sampler is a method of iteratively sampling from the full

conditional distributions of each unknown parameter, which results in a se-

quence of parameter values that converge to the true target joint posterior

distribution of the unknown parameters. This method requires calculation

of those full conditional posterior distributions. The full conditional poste-

rior distribution of a parameter is the posterior probability distribution of

that parameter, conditioned on the other unknown parameters, data and

priors. For computational ease, semi-conjugate prior distributions are often

placed on each parameter which allow for closed form solutions for each full

conditional posterior.

Definition 2.2. Semi-Conjugate

If F is a class of sampling distributions p(y|θ, φ), and P is a class of prior

distributions for θ conditional on φ, then the class P is semi-conjugate for

F if p(θ|y, φ) ∈ P ∀ p(y|θ, φ) ∈ F and p(y|φ) ∈ P .

Once full conditional posterior distributions are derived for each param-

eter, the Gibbs sampler can be used to approximate samples from the joint

posterior distribution, using the following algorithm:

12

The Gibbs Sampler

Let θ = {θ1, ..., θp} denote the vector of unknown parameters, p(θi|.) de-

note the full conditional distribution of θi and initialize θ(0) = {θ(0)
1 , ..., θ

(0)
p }.

The Gibbs sampler generates θ(s) from θ(s−1) in the following manner:

1) sample θ
(s)
1 ∼ p(θ1|θ(s−1)

2 , θ
(s−1)
3 , ..., θ

(s−1)
p , y1, ..., yn)

2) sample θ
(s)
2 ∼ p(θ2|θ(s)

1 , θ
(s−1)
3 , ..., θ

(s−1)
p , y1, ..., yn)

...

p) sample θ
(s)
p ∼ p(θp|θ(s)

1 , θ
(s)
2 , ..., θ

(s)
p−1, y1, ..., yn)

This process generates a dependent sequence of vectors θ(1), ...,θ(S) (for

convenience, this sequence is often referred to as a Markov-Chain Monte

Carlo sequence, or MCMC chain) that, for large enough S, converge to the

joint posterior distribution p(θ|y). For a thorough discussion of why this

algorithm converges to the target distribution, see Geman and Geman (1984).

The required S to achieve convergence depends upon the complexity of the

problem and the particular combination of sampling model and priors used;

convergence diagnostics, discussed in section 2.1.4 below, are often used to

assess whether a large enough S was considered. Furthermore, θ(s) depends

only upon θ(s−1), and so this sequence is a Markov chain and benefits from

all the properties of such chains (Hoff, 2010).

A classical example of a situation where Gibbs sampling is used is the nor-

mal sampling model with unknown mean and variance. Given the following

13

complete description of the model,

y1, ..., yn|θ, σ2 ∼ normal(θ, σ2)

θ ∼ normal(µ0, τ
2
0)

σ2 ∼ inverse-gamma

(
ν0

2
,
ν0σ

2
0

2

) (4)

It can be shown that the full conditional posterior distributions of θ and σ2,

p(θ|.) and p(σ2|.) respectively, are

θ|σ2, y1, ..., yn ∼ normal(µn, τ
2
n)

where µn =

µ0
τ20

+ nȳ
σ2

1
τ20

+ n
σ2

and τ 2
n =

(
1

τ 2
0

+
n

σ2

)−1

σ2|θ, y1, ..., yn ∼ inverse-gamma

(
νn
2
,
νnσ

2
n

2

)
where νn = ν0 + n and σ2

n =
1

νn

(
ν0σ

2
0 +

n∑
i=1

(yi − θ)2

)
(5)

Given these full conditional distributions, a Gibbs sampler can be imple-

mented to sample from the joint posterior distribution of (θ, σ2) (Hoff, 2010).

In some cases, such as when fitting generalized linear models, semi-conjugate

priors or closed form solutions for the full conditional distributions of the

unknown parameters do not exist. In such cases, the Gibbs sampler cannot

be used to approximate the joint posterior distribution and other methods

must be considered.

14

2.1.2 The Metropolis-Hastings Algorithm

When closed form solutions for the full conditional distributions are not avail-

able, the Metropolis-Hastings algorithm is often used to sample from the tar-

get distribution. This algorithm does not require specification of the full con-

ditional distributions; instead, a new set of parameter estimates is proposed

by sampling from a proposal distribution, denoted J(θ∗|θ(s)), where θ(s) de-

notes the current set of parameter estimates and θ∗ denotes the proposed set

of parameter estimates. Often, this proposal distribution is a random walk

function, such as J(θ∗|θ(s)) ∼ mvnormal(θ(s), γ2Ip), where γ2 is thought of

as the step size, or the value that determines the distance the proposed set

of parameter estimates falls from the current set, on average.

Once proposed, the new set of estimates is assessed by evaluating the pos-

terior likelihood at both the current and proposed set of parameter estimates;

if the proposed set results in a larger likelihood, the proposal is accepted. If it

results in a smaller likelihood, it is accepted with some probability r, defined

below. Allowing the algorithm to accept proposals that result in smaller

likelihoods enables it to escape local maxima and spend time in each region

of the parameter space proportional to the target density. Formally, the

Metropolis-Hastings algorithm is defined by the following:

15

The Metropolis-Hastings Algorithm

Let θ(s) denote the current set of parameter estimates, θ∗ denote the

proposed set of estimates and J(θ∗|θ(s)) denote the proposal distribution.

1) sample θ∗|θ(s) ∼ J(θ∗|θ(s)).

2) compute the acceptance ratio r = p(θ∗|y)

p(θ(s)|y)
= p(y|θ∗)p(θ∗)

p(y|θ(s))p(θ(s)) .

3) set θ(s+1) =

θ∗ with probability min(r, 1)

θ(s) with probability 1−min(r, 1)

.

This process generates a dependent sequence of vectors θ(1), ...,θ(S) that, for

large enough S, converge to the joint posterior distribution p(θ|y). Again,

the required S depends upon the complexity of the model; convergence

diagnostics should be used to assess whether the algorithm converged to

the true joint posterior distribution. Note that in the above definition,

we assume the proposal distribution is symmetric; that is, we assume that

J(θ∗|θ(s)) = J(θ(s)|θ∗). The Metropolis-Hastings algorithm allows for non-

symmetric proposals by adjusting for values that are proposed too often

(Hoff, 2010), but that is not discussed here.

2.1.3 Mixed Sampling Methods

In more complicated settings, such as hierarchical generalized linear models,

the Metropolis-Hastings algorithm can be integrated into the Gibbs sam-

pler to allow for more efficient sampling from the target distribution; this is

16

discussed in greater detail in section 3.2.

2.1.4 Convergence Diagnostics

The theory behind the above computational methods assures us that the

MCMC chains must converge to the target distribution, if allowed to run

long enough. It does not, however, tell us how long the algorithms must run

to converge to that distribution. Therefore, convergence diagnostics must

be used to determine if the algorithm has run long enough. While there

are many tools used to assess the convergence of MCMC chains, most of

them rely upon the same fundamental concept; if different MCMC chains

are initialized from random starting locations overdispersed relative to the

target distribution, and all converge to the same location in the parameter

space, then we can have confidence that the chains have converged to the

true target distribution. In this section, we discuss two tools that use this

ideology: a graphical tool known as a trace plot and the Gelman-Rubin

statistic.

For each individual parameter in the target distribution, we can think

about tracing its path through the parameter space by graphing its value

indexed by the iteration number. This is the idea behind a trace plot. Once

a trace plot has settled into a location, such that the remaining MCMC iter-

ations bounce around that value, we can have confidence that the parameter

estimate has converged to its proper value. Graphically, trace plots that sig-

nify a parameter estimate has converged to its true value are often described

17

as “fuzzy caterpillar” like in appearance, which is perhaps evident from figure

1 below.

Figure 1: Examples of trace plots that display a lack of convergence (left)
and evidence of convergence (right).

As the number of estimated parameters increases, it becomes difficult

to assess the convergence of the MCMC with trace plots alone, due to the

large number of plots that must be considered. In such cases, a numerical

summary measure assessing the convergence of the sampler is desired; the

Gelman-Rubin statistic is such a measure. This statistic, developed by An-

drew Gelman and Donald Rubin in 1992, provides a means of determining

whether multiple chains initialized at different starting locations have con-

verged to the same location. It does so by using an ANOVA-like procedure,

comparing the between-chain variability to the within-chain variability. If

this ratio, known as a potential scale reduction factor (PSRF) is small, there

18

is evidence that the chains are similar and have converged to the same distri-

bution. Conversely, if the variability between the chains is large relative to

the variability within each chain, there is evidence that the chains have not

yet converged to the same distribution (Gelman and Rubin, 1992). Five years

later, Gelman and Stephen Brooks proposed a correction to that statistic,

but the corrected statistic still uses the same ANOVA-like approach (Brooks

and Gelman, 1998). Due to this ANOVA-like approach, PSRFs close to one

signify convergence across the chains.

2.2 Bayesian Hierarchical Modeling

The computational methods discussed above allow us to fit more complicated

models from a Bayesian perspective. One common setting in which these

sampling methods are used is the hierarchical model. In Bayesian statistics,

the hierarchical model is often used to model data that arise from clusters. It

allows us to account for both the within group and between group variability

that we expect to see in such a setting, as well as account for the dependence

in observations that we expect to see within a group. We begin by describ-

ing this relationship in the normal hierarchical framework and then extend

these ideas to the multinomial framework in which we are working with the

Kershaw data.

19

2.2.1 The Normal Hierarchical Model

The normal hierarchical model is most easily understood through an analogy.

Consider the classical case of modeling exam scores of students at a school.

We expect similarities within each class and some differences across classes,

but in general all classes to behave similarly relative to each other because

they are in the same school. To model data such as these, we think of

each group (class) as having its own mean that comes from a distribution

describing the means across classes. Graphically, the normal hierarchical

model looks like the following:

Figure 2: Graphical representation of the normal hierarchical model from A
First Course in Bayesian Data Analysis (Hoff, 2010).

In this graphic, µ and τ 2 describe the mean and variance of the normal

distribution at the top level of the hierarchy, respectively. The θi’s represent

each individual class mean, which arise from the normal(µ, τ 2) distribution.

And finally, ν0 and σ2
0 are the parameters of the prior distribution placed on

σ2
i , the variance parameter for a particular class. The θi and σ2

i parameters

then define the normal distributions that describe each of the sets of class-

20

level observations.

The complete description of the normal hierarchical model is:

y1m, ..., ynmm|φm ∼ normal(θm, σ
2
m), φm = {θm, σ2

m}

θ1, ..., θM |ψ ∼ normal(µ, τ 2), ψ = {µ, τ 2}
(6)

where m indexes the hierarchy. The first relationship describes the within-

class variability and the second relationship describes the between-class vari-

ability. Often, we assume homogeneity of variance across classes. In such

case, this model requires prior distributions on the σ2 parameter and on the

hyper-parameters in ψ. To fit the model, semi-conjugate priors can be placed

on all three parameters to allow a Gibbs sampler (Hoff, 2010).

2.2.2 The Multivariate Normal Hierarchical Model

We can easily extend the normal hierarchical model to the multivariate nor-

mal case. In such a setting, the complete description of the model is:

y1j, ...,ynjj
|φj ∼ mvnormal(θj,Σ), φj = {θj,Σ}

θ1, ...,θJ |ψ ∼ mvnormal(µ,V), ψ = {µ,V }
(7)

In this case, prior distributions are placed on the Σ parameter and hyper-

parameters in ψ to get estimates; typically, semi-conjugate priors are placed

on all three parameters to allow for Gibbs sampling (Hoff, 2010). The mul-

tivariate normal hierarchical model allows for a straightforward extension to

21

normal hierarchical regression.

2.2.3 Normal Hierarchical Regression

The hierarchical normal regression model is a direct result of the multivariate

normal hierarchical model described above, replacing θj with the familiar

mean structure from normal regression, Xβj. That is, we have:

y1j, ...,ynjj
|φj ∼ mvnormal(θj,Σ), φj = {θj,Σ},θj = Xβj

β1, ...,βJ |ψ ∼ mvnormal(µ,V), ψ = {µ,V }
(8)

In this setting, prior distributions must be placed on Σ and the hyper-

parameters in ψ. A Gibbs sampler is again available with the right choice

of semi-conjugate priors (Hoff, 2010). In the next section, we consider the

benefits of a hierarchical model, and justify the extra complexity of such a

model.

2.2.4 Shrinkage Estimators

In addition to accounting for the dependence in observations within groups,

hierarchical modeling allows for better estimates of multiple group means

than does the non-hierarchical alternative. When ignoring the hierarchical

structure, the true mean of each group in the hierarchy is estimated by its

individual group mean. In a hierarchical framework, the true mean of each

group is estimated with a shrinkage estimator, which is a weighted average of

the individual group mean and the overall grand mean of all the data; that

22

is, this estimator “shrinks” each individual group mean towards the overall

mean. The degree to which each group mean is shrunk towards the grand

mean depends upon the sample size for that particular group; the larger the

sample size, the lesser the effect of the shrinkage (Hoff, 2010).

Perhaps counter-intuitively, Stein and James showed that when there ex-

ist more than two groups, this shrinkage estimator results in a lower expected

mean square prediction error than does the individual mean estimator, a phe-

nomenon known as Stein’s paradox (Efron and Morris, 1977). Therefore, in

a prediction context as is typically the case in a hierarchical framework, the

hierarchical model outperforms its non-hierarchical counterpart. In a sense,

the shrinkage estimator allows a group within the hierarchy to “borrow” in-

formation from the other groups in the hierarchy, a feature that proves very

useful when we have little data on some members of the hierarchy. Next, we

consider the hierarchical multinomial regression model and its relationship

with the normal hierarchical model.

3 Methods

In this section, we build upon the methods discussed above to develop the

model we fit to the Kershaw data. We begin with a discussion of multinomial

hierarchical regression, and conclude with a discussion of the Kershaw model.

23

3.1 Multinomial Regression

Before considering the hierarchical multinomial regression model, we first

consider the simpler case when there is no hierarchy. In general, with multi-

nomial regression, the goal is to estimate the probabilities associated with

each of the levels of the response variable; it is assumed that these probabili-

ties are a function of covariates. To relate the covariates to the probabilities,

we use the multinomial logit link function. For J levels of the response

variable, the full description of the model is:

y1, ...yn|β ∼ multinomial(1,πi), πij =
exiβj∑J
k=1 e

xiβk

(9)

where yi is the response vector for the ith observation and βj is the vector

of true regression coefficients associated with the jth level of the response.

In this particular parameterization of the model, we assume that each obser-

vation is a single draw from a multinomial random variable. We can think

of this as placing a single ball into one of J bins. Therefore, yi is a vector

containing a single one, and J − 1 zeros. Note that this model implies that

each of the J levels of the response has its own set of regression coefficients.

3.1.1 Hierarchical Multinomial Regression

In hierarchical multinomial regression, each member of the hierarchy has its

own vector of probabilities for a particular pattern of the covariates. This

is analogous to the normal hierarchical regression model, where each group

24

has its own mean for a particular pattern of the covariates. Therefore, each

member of the hierarchy has its own matrix of regression coefficients that

relate the covariates to each level of the response through the multinomial

logit link function described in equation 9 above.

If we think of each set of regression coefficients as arising from a mul-

tivariate normal distribution, then this model becomes a straight forward

extension of the hierarchical multivariate normal model. Assuming J levels

of the response and M members in the hierarchy, the complete description

of the model is:

y1, ...ynm
|πim ∼ multinomial(1,πim), πijm =

exiβjm∑J
k=1 e

xiβkm

β1, ...,βM |ψ ∼ mvnormal(µ,Σ), ψ = {µ,Σ}
(10)

This model implies that each member of the hierarchy has a unique matrix

of regression coefficients of dimension p × J , where p represents the number

of regression coefficients in the model and J represents the number of levels

of the response. Next, we define the model in the context of the Kershaw

data.

3.2 The Kershaw Model

In this section, we discuss the hierarchical multinomial regression model fit

to the Kershaw data. First, we outline our exploratory data analysis, and

then we describe the model we fit and conclude with a discussion of the com-

25

putational algorithm used to approximate the joint posterior distribution.

3.2.1 Exploratory Data Analysis

Clayton Kershaw throws four different pitches: a fastball, a curveball, a slider

and a change-up. Our goal with this analysis was to predict the probabil-

ity of observing each of those four possibilities on any pitch. In order to

build a model capable of predicting the type of pitch to be thrown, we need

a response that denotes the type of pitch thrown. Fortunately, one of the

variables contained within the PITCHf/x database is a pitch type classifier.

This classifier predicts the type of pitch thrown based on a neural network

algorithm that takes into account a number of factors, including the speed,

curvature, and vertical and horizontal shift of the pitch. It is worth noting

that this is not necessarily a perfect predictor of the type of pitch actually

thrown; there are some entertaining interviews with players in which they

share that the PITCHf/x classifier mis-classifies the type of pitch they throw.

Nevertheless, the goal of this research is to predict the output of that classi-

fier, which at the very least, serves as a good proxy for the type of movement

we expect to see for a particular pitch (Nathan, 2011).

There are many potential predictor variables available in the PITCHf/x

database. For this research, we chose to focus on the count variable, which

is a categorical predictor with 12 levels. This variable denotes the count of

balls to strikes, and is generally regarded as one of the most influential factors

when trying to predict the type of pitch thrown. As visual evidence of this

26

statement, we provide a plot the relative frequencies of each of Kershaw’s

four pitches by count in figure 3.

Figure 3: Pitch type relative frequencies by count, where CH, CU, FF and
SL represent change-ups, curveballs, fastballs and sliders, respectively.

In the top right-hand corner of the grid, we see the case where Kershaw

is down in the count, or has thrown more balls than strikes. In such a case,

he is closer to walking the batter than he is to striking him out. As a result,

we can see that he almost exclusively throws fastballs in an attempt to work

his way back into the count. In the bottom left-hand corner of the grid, we

see the case where Kershaw is up in the count, or has thrown more strikes

than balls. In such a case, we see a good deal more variability in the type of

pitch he will throw. Overall, this plot suggests that count would be a useful

27

predictor in a pitch prediction model.

In addition to the current count, we wanted to incorporate information

regarding the sequence of previous pitches into our model. In the MLB, there

is this idea of “setting up a batter;” this phrase refers to a pitcher’s tendency

to throw a particular sequence of pitches such that the terminal pitch in

that sequence has a higher probability of success. For example, a talented

pitcher may intentionally throw two fastballs high and inside, to “setup” a

curveball low and away; after seeing two very fast pitches high and inside,

the batter may not expect to see a slower pitch curving low and away from

them. To incorporate some of this information into our model, we built a

previous pitch type predictor, which is a categorical predictor with five levels

denoting the type of previous pitch thrown. Again, to visualize the utility of

such a predictor, we provide relative frequency bar charts below.

28

Figure 4: Pitch type relative frequencies by previous pitch type, where CH,
CU, FF and SL represent change-ups, curveballs, fastballs and sliders, re-
spectively.

We see a very interesting story in these plots. The plot in the top-left

corresponds to the case where there is no previous pitch for a particular

batter, or the very first pitch of the at-bat; in such a case, we see a fastball

almost 80% of the time. And indeed, in most cases, we predominantly see

fastballs, as general baseball intuition might suggest. However, we do think

we were able to tease out some of the pitch sequencing relationships discussed

above. The final panel of the grid corresponds to the case where the previous

pitch was a slider. In this case, we see a slider occurs as the next pitch with

far greater frequency than it does in any of the other four cases. This may

suggest that Kershaw has a tendency to throw sliders in pairs; we see a

similar relationship again with change-ups. Overall, these plots suggest that

29

this predictor may also be of use in a pitch prediction model.

And finally, though not a predictor itself, we wanted to consider differ-

ences in pitch type probabilities across the different catchers that Kershaw

has thrown to over his career. As mentioned above, the catcher is responsible

for signaling the type of pitch to be thrown next; therefore, we may antici-

pate some differences in pitch type probabilities across catchers. To include

this information, we choose to fit a hierarchical model, allowing each catcher

to have a unique set of pitch type probabilities.

Between the count and previous pitch predictor, the anticipated model

would have 16 regression coefficients to estimate per level of the response, for

a total of 64 regression coefficients. Furthermore, each member of the hier-

archy has a unique set of coefficients. Additionally, the variance-covariance

matrix grows in dimension with the number of total regression coefficients to

be estimated. Therefore, for primarily computational reasons, we restricted

our model to consider only these components. Next, we formally specify the

model we chose to fit.

3.2.2 Model Specification

We let i index the observation number, j index the level of the response and

m index the catcher in the hierarchy, of which there were 11. Then the ith

observation for the mth catcher is a 1 × 4 vector with a single element equal

30

to one, denoting which pitch was observed.

y1, ...ynm
|πim ∼ multnomial(1,πim) πijm =

exiβjm∑4
k=1 e

xiβkm

β1, ...,β11|ψ ∼ mvnormal(µ,Σ), ψ = {µ,Σ}
(11)

The count predictor has 12 levels, and the previous pitch predictor has 5

levels; therefore, for each level of the response, there are 16 regression coeffi-

cients to be estimated, for a total of 64 regression coefficients per member of

the hierarchy. The hyper-parameters in ψ require prior distributions. Due

to the link function, Gibbs sampling is not available for the regression coeffi-

cients; instead, the Metropolis-Hastings algorithm is implemented. We can,

however, specify semi-conjugate prior distributions on the hyper-parameters

in ψ that allow for Gibbs sampling from the joint posterior distribution of

{µ,Σ}. Therefore, our semi-conjugate priors are:

µ ∼ mvnorm(µ0,Λ0)

Σ ∼ inverse-Wishart(η0,S0)

(12)

We chose µ0 = 0, Λ0 = 100I64, η0 = 64 and S0 = I64 such that our priors

were weakly informative. Given these prior distributions, it can be shown

31

that the full conditional distribution of µ and Σ are:

µ|Σ,β1, ...,βm ∼ mvnorm(µn,Λn)

where µn = Λn

(
Λ−1

0 µ0 + Σ−1
m∑
k=1

βk

)
and Λn =

(
Λ−1

0 +mΣ−1
)−1

Σ|µ,β1, ...,βm ∼ inverse-Wishart
(
η0 +m, (S0 + Sµ)−1

)
where Sµ =

m∑
k=1

(βk − µ)(βk − µ)T

(13)

Given these full conditional distributions, a Gibbs sampler can be im-

plemented to sample from the joint posterior of µ and Σ. To sample from

the joint posterior distribution of the regression coefficients, the Metropolis-

Hastings algorithm is implemented. The full description of this mixed sam-

pling procedure is described in the next section.

3.2.3 The Block Metropolis-within-Gibbs Sampler

The framework for this sampling procedure was presented in section 2.1; here,

we make one small addition to the method and then we formally describe

the sampler. The Metropolis-Hastings step of this algorithm updates the 64

regression coefficients for a single catcher, one catcher at a time. Therefore, a

vanilla Metropolis-Hastings step for this hierarchical model would propose a

random walk on each of the 64 coefficients per catcher, then accept or reject

all of these 64 new estimates per catcher at once.

This process can be overly restrictive and lead to additional computation

32

time. It is not hard to imagine a case where a step in the wrong direction

for a handful of the 64 coefficients could lead to the rejection of the entire

proposal, despite the remaining coefficients making marginal steps in the

right direction. To try and account for this problem, we chose to update

the set of coefficients associated with each covariate in the model block-wise.

That is, we first propose a random walk on the four intercept coefficients,

accept or reject that set and then propose a walk on the 44 count coefficients,

accept or reject them, and so on. Formally, the computational algorithm that

we implemented looks like the following:

The Block Metropolis-within-Gibbs Sampler

Let µ(s−1) and Σ(s−1) denote the current values of the hyper-parameters.

Furthermore, let β
(s−1)
.1 , ...,β(s−1)

.m denote the current estimates for the

vector of regression coefficients for each of the members of the hierarchy

and let βkm denote the set of regression coefficients associated with the

kth covariate in the regression model for the mth member of the hierarchy.

Finally, let J(θ∗|θ(s−1)) denote a random walk distribution. Initialize

{µ,Σ,β.1, ...,β.m} at {µ(0),Σ(0),β
(0)
.1 , ...,β

(0)
.m}. The block Metropolis-

within-Gibbs sampler generates {µ(s),Σ(s),β
(s)
.1 , ...,β

(s)
.m} from

{µ(s−1),Σ(s−1),β
(s−1)
.1 , ...,β(s−1)

.m } in the following manner:

Gibbs step for {µ,Σ}

1) sample µ(s) ∼ p(µ|Σ(s−1),β
(s−1)
.1 , ...,β(s−1)

.m).

2) sample Σ(s) ∼ p(Σ|µ(s),β
(s−1)
.1 , ...,β(s−1)

.m).

33

Metropolis-Hastings step for {β.1, ...,β.m}

For j in the 1 : m members of the hierarchy,

and for i in the 1 : K variables in the model,

3) sample β.j, the regression coefficients for the jth member of the

hierarchy.

i) sample β∗ij ∼ J(βij|β
(s)
1j , ...,β

(s)
(i−1)j,β

(s−1)
(i+1)j, ...,β

(s−1)
Kj). Denote

{β(s)
1j , ...,β

(s)
(i−1)j,β

∗
ij,β

(s−1)
(i+1)j, ...,β

(s−1)
Kj } as β∗.j and

{β(s)
1j , ...,β

(s)
(i−1)j,β

(s−1)
ij ,β

(s−1)
(i+1)j, ...,β

(s−1)
Kj } as β

(s−1)
.j

ii) compute the acceptance ratio

r =
p
(
yj |β

∗
.j

)
p
(
β
(s)
.1 , ...,β

(s)
.(j−1),β

∗
.j ,β

(s−1)
.(j+1), ...,β

(s−1)
.m |µ(s),Σ(s)

)
p
(
yj |β

(s−1)
.j

)
p
(
β
(s)
.1 , ...,β

(s)
.(j−1),β

(s−1)
.j ,β

(s−1)
.(j+1), ...,β

(s−1)
.m |µ(s),Σ(s)

)

iii) set β
(s)
.j =

β∗.j with probability min(r, 1)

β
(s−1)
.j with probability 1−min(r, 1)

.

This process results in a sequence of parameter estimates that converge

to the true joint posterior distribution of {µ,Σ,β.1, ...,β.m}. In the next

section, we apply this sampler to simulated data in a simulation study that

explores the advantages of hierarchical modeling.

34

4 Simulation Study

Before discussing the analysis on the Kershaw data, we first consider a simu-

lation study on multinomial hierarchical regression. To gain some confidence

in our sampler, and to verify that the increased predictive capability of a hi-

erarchical model justifies the added complexity of the hierarchical structure,

we simulated hierarchical multinomial data and compared the predictive ca-

pability of a multinomial regression model and its hierarchical counterpart

using a Bayes factor as a criterion. In this section, we discuss how we gen-

erated hierarchical multinomial data, describe the simulation study, define

the Bayes factor, and evaluate the predictive capability of the hierarchical

model.

4.1 Generating Hierarchical Multinomial Data

We consider a simple example for this simulation study. Suppose we are inter-

ested in predicting a response with three levels based on a single categorical

predictor, which also has three levels. Further suppose that the relationship

between the predictor and the response differs for three different groups in a

hierarchy. In a regression context, we fit the following model:

y1m, ...,ynmm|πim ∼ multinomial(1,πim), πijm =
exiβjm∑J
k=1 e

xiβkm

β1, ...,βM |ψ ∼ mvnormal(µ,Σ), ψ = {µ,Σ}
(14)

35

Here, i indexes the observation number, j indexes the level of the response

and m indexes the member of the hierarchy. In an estimation context, our

goal is to estimate the 3 × 3 matrix of coefficients for each group in the

hierarchy.

To generate these data, we first specify µ, the hyper-parameter that

describes the mean vector of the top level of the hierarchy, and Σ, the

variance-covariance matrix for that multivariate normal distribution. In

our simulation, we randomly generated µ by taking nine draws from a

discrete uniform(−1, 1) distribution and set Σ to be a 9 × 9 identity ma-

trix. We then generated a set of regression coefficients for each of the three

members of the hierarchy by taking three draws from a mvnormal(µ,Σ)

distribution.

These regression coefficients were then used to generate the true matri-

ces of probabilities for each of the members of the hierarchy, using the link

function described in equation 14 above. Once we had these 3 × 3 matrices

of probabilities for each member of the hierarchy, we used them to generate

300 observations for each member of the hierarchy by taking draws from a

multinomial distribution with the appropriate vector of probabilities. These

900 observations were then used to fit both the hierarchical multinomial re-

gression model and the model ignoring the hierarchy. Finally, we replicated

this process to generate another 900 observations, based on the same true

probability matrices, upon which to validate our estimates.

36

4.2 The Bayes Factor

In Bayesian statistics, a popular model comparison tool is known as the

Bayes factor; this quantity is a measure of the evidence in the data for a

particular model relative to another. It is the factor by which we multiply

the priors odds ratio for the two competing models in order to calculate the

posterior odds ratio for those two models. That is, given some data y and

two competing models M1 and M2, the posterior odds in favor of model 2 is

given by:

p(M2|y)

p(M1|y)
=
p(y|M2)

p(y|M1)

p(M2)

p(M1)
(15)

The quantity in equation 15 is the Bayes factor; in the event where equal

prior probability is placed on the two competing models, as is often the case,

the Bayes factor is itself the posterior odds of model 2 to model 1 given the

data. Using the law of total probability, the Bayes factor can be expressed

as the following:

BF21 =

∫
p(y|θ2)p(θ2)∫
p(y|θ1)p(θ1)

(16)

where θi is the set of unknown parameters associated with model Mi. These

integrals are often approximated using Monte Carlo integration techniques

across the posterior samples (Hoff, 2010). It is worth noting that inherent

to these calculations is a penalty for more complicated models; that is, the

Bayes factor favors less complicated models if both models provide adequate

descriptions of the data (Jefferys and Berger, 1992).

An extension of this standard Bayes factor to a cross-validation framework

37

is described in An Introduction to Bayesian Analysis: Theory and Methods

by Ghosh et al. (2010). In such a framework, the posterior samples based on

the training dataset replace the prior distributions for the parameters under

each model. That is, letting y1 denote the training dataset and y2 denote

the validation dataset, the conditional Bayes factor comparing model 2 to

model 1 is given by:

BF21(y1) =

∫
p(y2|θ2)p(θ2|y1)dθ2∫
p(y2|θ1)p(θ1|y1)dθ1

(17)

Again, these integrals are typically approximated using Monte Carlo methods

across the posterior samples. In terms of practical application, Kass and

Raferty developed a nice table (see table 1) of interpretations of Bayes factors

on the log scale.

2log(BF) strength of evidence
0 to 2 not worth more than a bare mention
2 to 6 positive
6 to 10 strong
> 10 very strong

Table 1: Table of interpretations of logged Bayes factors from Kass and
Raferty (1995)

Table 1 provides a practical interpretation of the conditional Bayes factor

discussed above. At a high level, the Bayes factor is just a ratio of the poste-

rior likelihood under each model integrated across each parameter space. In

this way, it gives us a complete description of the variability in our posterior

estimates.

38

4.3 Results

We replicated this simulation 50 times, each time generating a new set of

hyper-parameters from which to draw the regression coefficients for each

group. We then fit both the multinomial regression model and its hierar-

chical counterpart to the 900 observations generated from each of these sets

of regression coefficients. Finally, we calculated the conditional Bayes factor

comparing the hierarchical model to its non-hierarchical counterpart, sum-

marized in figure 5.

Figure 5: Boxplot of twice the logged conditional Bayes factor comparing the
hierarchical model to its non-hierarchical counterpart.

39

Based on the plot, there appears to be very strong evidence that the

hierarchical model provides a better description of the data in each of the

50 simulations than does the non-hierarchical model. From this simulation,

we gain confidence in our sampler and also in the advantage of fitting a

hierarchical model in the presence of hierarchical data. With this confidence

in hand, we turned our attention to the Kershaw data.

5 Kershaw Analysis

In this section, we discuss the results of the Kershaw model. First, we discuss

the set of models to which we compared the hierarchical model discussed

above. We then assess the convergence of the samplers used to fit those

models and conclude with a discussion of the results.

5.1 Model Comparison

The primary model of interest is the hierarchical multinomial regression

model discussed in section 3.2., which we call model 1 for convenience.

This model was motivated by the fact that we anticipated differences in the

probability of observing each pitch across the 11 different catchers Kershaw

has thrown to over his career. To evaluate this claim, we also fit the non-

hierarchical counterpart to this model to serve as a baseline for comparison,

which we call model two.

40

5.2 Convergence Diagnostics

We consider both graphical and numerical convergence diagnostics for these

competing models. For each model, we consider a random sample of trace

plots and the multivariate Gelman-Rubin statistic to assess the convergence

of each sampler.

5.2.1 Assessing Model One Convergence

For model one, we ran three independent chains from random starting lo-

cations, and allowed each chain to run for 1,000,000 iterations. To conserve

memory, we chose a thinning interval of 10, meaning we kept every 10th

iteration and discarded the rest. Of primary interest in this analysis are

the predicted probabilities; therefore, we chose to look at traceplots on the

probability scale, as opposed to the regression coefficients themselves. These

traceplots are likely a better representation of the convergence of the algo-

rithm, as there often exist identifiability issues on the regression coefficient

scale in the multinomial logisitic regression framework. These issues can lead

to regression coefficients that appear to “wander” in traceplots, despite the

predicted probabilities remaining constant (Grün and Leisch, 2008).

For these data, there are 45 unique combinations of the covariates for

which we calculated predicted probabilities; each of these combinations led

to four traceplots, corresponding to the four types of pitches Kershaw throws.

Therefore, for each member of the hierarchy, there are 180 traceplots that we

could consider, for a grand total of 1,980 plots. Consequently, to evaluate the

41

convergence of our sampler, we provide a few examples of randomly selected

traceplots and rely more heavily upon numerical convergence diagnostics to

assess the convergence of all model parameters.

Provided below are randomly selected traceplots corresponding to pre-

dicted probabilities for nine combinations of the covariates for A.J. Ellis, the

catcher to whom Kershaw threw the most.

Figure 6: Randomly selected traceplots corresponding to predicted probabil-
ities for nine combinations of the covariates for A.J. Ellis.

42

These traceplots display the “fuzzy caterpillar” like appearance discussed

in section 2.1.4, suggesting that those parameter estimates have converged to

their proper location in the target distribution. We do see some interesting

artifacts in the plot corresponding to predicting a change-up on a 1-2 count

given the previous pitch was a fastball (bottom left). However, we must keep

in mind that probabilities are bounded below by 0; therefore, if an event is

unlikely to occur, such as a change-up following a fastball on a 1-2 count,

we might expect to see traceplots like we do above. Overall, these nine plots

suggest that those predicted probabilities converged to their true location in

the target distribution.

While these nine plots look good, there are 1,971 more to consider. To

evaluate the convergence of all 1,980 parameters, we considered boxplots of

the PSRFs for the 180 probability estimates for each of the 11 catchers in the

hierarchy (see figure 7). For all 11 catchers, the bulk of each of the PSRFs are

very close to 1, with none exceeding 1.5 suggesting that the sampler converged

to the true target distribution. This, combined with the traceplots, gives us

confidence in our estimated posteriors.

43

Figure 7: Boxplots of the potential scale reduction factors for the 180 pre-
dicted probabilities for each of the 11 catchers.

5.2.2 Assessing Model Two Convergence

We used a similar approach to assessing the convergence of model 2; however,

we no longer had the hierarchical component to take into account. Therefore,

there were only 180 parameter estimates to consider. Again, we randomly

selected nine traceplots to consider, and looked at a boxplot of the PSRFs.

These nine traceplots all display the “fuzzy caterpillar” like appearance

that we associate with convergence, and the PSRFs are all very close to 1.

Overall, these diagnostics suggest that our sampler converged to the target

distribution. With confidence in the convergence of our sampler for both

models, we next consider the results of this analysis.

44

Figure 8: Randomly selected traceplots corresponding to predicted probabil-
ities for nine combinations of the covariates for the non-hierarchical model,
with a boxplot of the 180 potential scale reduction factors overlaid.

5.3 Results

In this section, we compare the hierarchical model to its non-hierarchical

counterpart using the conditional Bayes factor discussed in section 4.2. To

calculate this quantity, we evaluated the log likelihood for each observation

in the validation dataset under both the hierarchical and non-hierarchical

models. To account for the full variability in the posterior distribution of

each model, we averaged the value of the log likelihood across all posterior

samples for each observation; we then summed the log likelihood for each

model across the 4,980 observations in the cross validation dataset for each

45

model. Finally, we took twice the difference between these two approximated

integrals to calculate 2log(BF21(y1)) = 140.33 for these data.

Based on the table 1, this conditional Bayes factor provides extremely

strong evidence that the hierarchical model is a better description of these

data than the non-hierarchical model, which confirms our intuition that the

probability of observing each of Kershaw’s four pitches differs by catcher. In

the next section, we consider the implications of this model, and consider

improvements upon it.

6 Conclusion

In this section, we begin by revisiting the 2016 NLDS game discussed in

the introduction. We then discuss the things we liked about this project and

potential improvements that could be made to this model. We conclude with

our finals thoughts on this research.

6.1 Example Revisited

We now return to the 2016 NLDS game we discussed in the introduction.

In that game, Wilmer Difo found himself in a 1-2 count, having just seen a

slider, with the Nationals’ World Series aspirations on the line. In such a

case, based on our model, the most probable pitch is a slider with probability

0.3600, closely followed by a curveball with probability 0.3364. The very next

pitch Difo saw was a slider, which he fouled off, bringing him again to a 1-2

46

count with the previous pitch being a slider. Therefore, our model returned

the same predicted probabilities. The next pitch Difo saw was a curveball,

which he struck out on. Would this model have made a difference? We would

like to think yes, but leave that judgment to the reader. In terms of practical

application, the Nationals third base coach could have communicated the

high slider and curveball probabilities to Difo, perhaps changing the outcome

of that game.

6.2 Further Investigations

The evidence we saw in favor of the hierarchical model confirmed our intuition

about differences across catchers, which was an exciting result. Furthermore,

the overall predictive capability of the model surprised us, as evidenced by

the example above.

This model will serve as a good foundation for more complicated models

moving forward. In general, there are a number of improvements that could

be made to this model. For example, we could start by considering additional

predictors, such as the batting average of the opposing batter. Furthermore,

we would really like to consider a better way of modeling the pitch sequencing

aspect of baseball. To do so, rather than forcing it into the model matrix

through the creation of a previous pitch predictor, we could think about

allowing the probabilities of observing each of Kershaw’s pitches to change

over the course of a game by including a dynamic component to this model.

We could further extend that dynamic component to allow Kershaw’s

47

pitch type probabilities to change over the course of his career. In fact,

because Kershaw threw to different catchers at different times in his career,

part of the strong hierarchical signal we found in these data could be due to

changing pitch type probabilities over time. Finally, we would like to consider

a spatial prediction component in this model, which would allow us to not

only predict the type of pitch to be thrown, but also the general location.

These are ideas we look to further explore in the coming years.

6.3 Closing Thoughts and Acknowledgments

I would like to thank my advisors, Dr. Andrew Hoegh and Dr. Jennifer

Green, for all the time they committed to the development of both this

model and my understanding of statistics in general. Without their help,

this project would not have been possible. I would also like to thank Dr.

Mark Greenwood and the Montana State University Statistics faculty for

their continued support over the course of this project and their dedication

to excellence in teaching that allowed me to grow as a statistician over the

course of my Master’s degree.

48

7 References

Brooks, S. P. and Gelman, A. (1998). General methods for monitoring

convergence of iterative simulations. Journal of Computational and

Graphical Statistics, 7(4):434–455.

Chen, Z. and Kuo, L. (2001). A note on the estimation of the multinomial

logit model with random effects. The American Statistician,

55(2):89–95.

Crasnick, J. (2018). Clayton Kershaw at 30: A decade of dominance as seen

by the ace and those who know him best.

http://www.espn.com/mlb/story/_/id/22885658/

clayton-kershaw-30-decade-dominance-seen-pitcher-know-best.

[Online; accessed 27-March-2018].

Efron, B. and Morris, C. (1977). Stein’s paradox in statistics. Scientific

American, 236(5):119–127.

Gelfand, A. E. (2000). Gibbs sampling. Journal of the American Statistical

Association, 95(452):1300–1304.

Gelman, A. (2014). Bayesian Data Analysis. CRC Press, 3rd edition.

Gelman, A. and Rubin, D. B. (1992). Inference from iterative simulation

using multiple sequences. Statistical Science, 7(4):457–472.

49

Geman, S. and Geman, D. (1984). Stochastic relaxation, Gibbs

distributions, and the Bayesian restoration of images. IEEE

Transactions on Pattern Analysis and Machine Intelligence,

6(6):721–741.

Ghosh, J. K., Delampady, M., and Samanta, T. (2010). An Introduction to

Bayesian Analysis Theory and Methods. Springer.

Grün, B. and Leisch, F. (2008). Identifiability of finite mixtures of

multinomial logit models with varying and fixed effects. Journal of

Classification, 25(2):225–247.

Hoff, P. D. (2010). A First Course in Bayesian Statistical Methods.

Springer.

Jefferys, W. H. and Berger, J. O. (1992). Ockham’s razor and Bayesian

analysis. American Scientist, 80(1):64–72.

Kass, R. E. and Raftery, A. E. (1995). Bayes factors. Journal of the

American Statistical Association, 90(430):773–795.

Madigan, D., Genkin, A., Lewis, D. D., and Fradkin, D. (2005). Bayesian

multinomial logistic regression for author identification. AIP

Conference Proceedings, 803(1):509–516.

Nathan, A. M. (2011). The physics of baseball.

http://baseball.physics.illinois.edu/pitchtracker.html.

[Online; accessed 04-January-2018].

50

Novy-Williams, E. (2016). MLB teams allowed to use iPads in dugout all

season. The Chicago Tribune. Published 30 March 2016.

Schmidt, M. S. (2017). Boston Red Sox used Apple watch to steal signs

against Yankees. The New York Times. Published 05 September 2017.

Sievert, C. (2014). Taming PITCHf/x data with xml2r and pitchrx. The R

Journal, 6(1):5–19.

51

8 Appendix - R Code

A script containing all code used for this analysis is available at

https://github.com/StrattonCh/WritingProjectCode

52

