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1 Introduction

Quality Control is an essential component of modern manufacturing. Whether
the product is electronics, automobile parts, or food, manufacturers need to meet
the specifications of customers for product performance, and/or standards
established by regulatory agencies. This is a definition of quality. A product must be
produced consistently to meet these specifications and standards; therefore, the
manufacturing process needs to be monitored to ensure this goal is met.

The monitoring of production involves sampling the process or the product and
applying statistical methods to determine if specifications are being met. This is
called Statistical Process Control (SPC). This study examines a primary tool of SPC,
the Shewhart Control Chart, and its performance characteristics which assume
symmetrical, normally distributed sample data. Using simulation to verify one
theoretical measure of performance, the Average Run Length (ARL), the simulation
tool was then used to explore the effect on the ARL if data are not distributed
normally or symmetrically.

Following this introduction is a discussion of SPC and the Shewhart chart (2.1),
and the Average Run Length calculations (2.2) with Supplementary Runs Rules.
Then the simulation method (3.1) and results (3.2) are shown. Finally, the effect on
the ARL when sample data are simulated from non-normally distributed data,

including non-symmetrical data (4), and the conclusion of the study and thoughts



for future research (5). Section 6 and 7 are References and an Appendix for the

simulation code in R, respectively.



Quality Control

To monitor a manufacturing process, various quality characteristics are defined.
A quality characteristic is a measure of process or product quality. For example, a
manufacturing process may need to be completed at a specified temperature, or
perhaps must be maintained for a certain length of time. Such process
characteristics then must be monitored throughout the manufacture of a product.
Some quality characteristics are measured on the product, and might include the
dimensions, strength, capacity, density, or weight of the product. For example,
there may be critical dimensions of a product, such as the thickness of a wire.
Possibly, the quality characteristic is strength, such as the breaking strength of a
plastic component.
2.1 Statistical Process Control and Shewhart Control Charts

Statistical Process Control (SPC) applies the concepts of statistics to these
measures of process or product quality to monitor the manufacturing process.
Manufacturers use SPC to help them determine whether a process is in or is not in
control by taking sample measurements periodically and applying statistics. That s,
determine whether or not the process is producing products meeting production
requirements, and ultimately is meeting customer specifications.

Shewhart Control Charts are a popular and successful graphical tool used for
monitoring quality characteristics. The Shewhart Control Chart consists of several

components: the centerline, the control limits, and the warning limits. The



centerline is the target value of the quality characteristic being monitored. The
warning limits are two sampling distribution standard deviations above or below the
centerline. The control limits are three sampling distribution standard deviations

above or below the center line. (See Figure 1.)
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Figure 1 Shewhart Control Chart with Upper and Lower Control Limits (UCL and LCL), and Center Line (CL)
equal to target mean for the process. UCL and LCL are three standard errors from the mean. (Source:
https://qi.elft.nhs.uk/resource/control-charts/)

In practice, periodic measurements are made on the process or product, and
the sample mean is calculated and plotted on the chart. If the sample mean is more
extreme than the upper or lower control limit, the process is deemed to be out of
control. Statistically speaking, then, each sample mean plotted on the Shewhart
Control Chart is a hypothesis test, with the null hypothesis being that the process is
in control. If the sample mean falls outside the control limits, the null hypothesis is
rejected, and the conclusion is that the process is out of control. Factory or

machine operators then will attempt to determine the cause of the out of control



signal and make any necessary adjustments to the process needed to regain process
control.

If a process is on target, the probability of a sample mean being outside of the
control limits is 0.002699796 under the normality assumption. There is, therefore, a
finite probability of getting an out of control signal even if the process is in control.
Because the cost of halting a process to find problems and adjust the process can be
significant, it is desirable to avoid a false out of control signal, which is equivalent to
a Type | error in statistics. On the other hand, if the process is not in control, and
there is a shift in the mean making the process off target, then you want to quickly
detect that a shift has occurred. Failure to detect a shift is equivalent to a Type Il
error, when the null hypothesis is false but is not rejected.

2.2 Average Run Length and Supplementary Runs Rules

The run length is the number of samples taken before an out of control signal is
detected. The Average Run Length (ARL) is the expected value of the run lengths.
When a process is in control, we want the Average Run Length (ARL) to be large,
which would lead to fewer false signals. However, when a process is not in control,
and there is a shift in the mean quality characteristic to be off target, then we want
the ARL to relatively small.

For the Shewhart Control Chart with the three-sigma control limits the run
lengths follow a geometric distribution (Koutras, et al., 2007) with probability of

0.002699796 if the process mean is on target, so the average run length is just the



expected value of such a distribution, which is 370.4. Thus, on average, when the
process is in control and the process mean is on target, the average number of
samples before an out of control signal is detected is 370.4.

Probabilities of a sample mean landing outside of the three-sigma control limits
if the true process mean has shifted can be calculated using probability theory and
the normal distribution, and the average run lengths of the shifted mean process
can be calculated in a similar manner using the geometric distribution. For

convenience, the shifts are in terms of multiples of the standard error, d =
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, Where n is the sample size, o is the process standard deviation, u is
the current process mean from which a sample is taken, and o is the target process
mean (Champ and Woodall, 1987). Absolute values are used because a shift in the
process mean above or below the target results in the same probabilities if the
measures being sampled are normally distributed. A shift of d = 1 means that the
process mean has shifted one standard error from the target mean. The probability
that a sample mean falls outside of a control limit if the true process mean has
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Therefore, the average run length for a one standard error shift in the process mean
is expected value of the geometric distribution with the above probability, or 43.9.

A list of ARLs for the Shewhart Control Chart for a set of possible shifts from the
target process mean is shown in Table 1. For a large shift, such as three standard
errors, the ARL is about two, meaning that on average it would only take two
samples to detect the process was out of control. However, for small shifts, the ARL
is still relatively large. Even for a one standard error shift, it would take on average
nearly 44 samples to obtain an out of control signal, which could result in a
considerable amount of defective product being produced before the problem is
detected.

To improve the ability of the Shewhart Control Chart to detect small shifts in a
process mean, additional methods were developed based on potential patterns in
the sample means (Koutras, et al., 2007). These additional detection methods are
commonly referred to as Supplementary Runs Rules and are usually applied to the
Shewhart chart in addition to the upper and lower control limits. For example, rule
two (C2) indicates an out of control process if two of three consecutive sample
means are between two and three standard errors above the process mean or
below the process mean even though none of the sample means are beyond the

three-sigma control limits.



The average run lengths of combining supplementary runs rules with the
standard control chart with three sigma limits (C1) have been calculated using a
computer program by applying probability theory and Markov chains (Champ and
Woodall, 1987). When C1 and C2 are combined (C12), the average run lengths for
small shifts in process mean decreases greatly. For example, for a one standard

error shift from the mean, the ARL decreases from 43.9 to 20.0. (See Table 1.)

Shift
(standard
errors
from ARL 3 C1 plus C2
target sigma Supplementary
mean) (C1)  Run Rule (C12)

0.0 3704 2254
0.2 3084 177.6
0.4 200.1 104.5
0.6 119.7 57.9
0.8 71.6 33.1
1.0 43.9 20.0
1.2 27.8 12.8
1.4 18.3 8.7
1.6 12.4 6.2
1.8 8.7 4.7
2.0 6.3 3.6
22 4.7 3.0
2.4 3.7 2.5
2.6 29 2.1
2.8 24 1.9
3.0 2.0 1.7

Table 1 Calculated ARL for C1 and C12 by shift from process target mean. Shifts are number of standard
errors, and under the normality assumption data are symmetrically distributed, so positive and negative
shifts result in same ARL.
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3 Methods and Results

The calculations for average run lengths produced by Champ and Woodall
(1987), shown in in Table 1, assume that samples are drawn from normally
distributed data. An important question is what happens to Average Run Length
when sample data originate from non-normally distributed data? The initial
purpose of this study is to simulate samples drawn from a normal distribution and
verify the calculated ARL’s for the Shewhart Control Chart, alone and when
combined with rule 2. After verifying the validity of the simulation, use the
simulation to explore the effect on ARL’s when samples of the same size are drawn
from non-normal distributions with the same mean and standard deviation. Three
distributions were selected for this study: Uniform, Double Exponential, and Log-
Normal. The uniform distribution is symmetrically distributed but has no tail. The
double exponential distribution is also symmetrical, however with long tails on both
the higher and lower end. Finally, the Log-Normal distribution is skewed to the right
and is used to examine the effect of drawing samples from a non-symmetrical
distribution.
3.1 Simulation

The availability of computing power to carry out large quantities of calculations
has made simulation studies an important research method in statistics. When
Champ and Woodall (1987) calculated exact ARLs for Runs Rules, they wrote a

program in the BASIC computer language to make the calculations based on
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probability theory. Simulations such as bootstrap distributions, however, have
become increasingly common to use when theory-based methods may not be
convenient or intractable. Today, software specifically created for statistics helps
statisticians. For this study, the free, open source software known as R was used to
run the simulations and calculate the ARLs. The R package has functions for
producing samples from specific probability distributions, as well as program control
and decision tools such as loops and if statements which make programming a
simulation straight forward.

The R code for the simulation is included in the appendix. For each shift in
mean from 0 to 3.0 in 0.2 increments, 1000 simulations were completed. Each
simulation involved repeatedly taking samples of size n from a distribution,
calculating the sample mean, then applying either the three-sigma test or the runs
rule. If an out of control condition was detected, the run length — the number of
samples taken until the out of control was detected — was stored. The average of
the 1000 simulated run lengths was calculated.

To facilitate conducting simulations for different distributions, a function was
written that allowed specifying the mean, variance, sample size, and distribution.
The function also allowed for specifying if the shifts would be positive or negative.
For symmetrical distributions, shifts of positive or negative have the same ARL. But

for skewed distributions like the lognormal, it was expected that the ARL for
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negative shifts would differ from the ARL for positive shifts in process mean. (See R

Code in Appendix.)
3.2 Results for Normally Distributed Data

The simulation results for the three-sigma control chart rule and the combined
C12 runs rule is shown in Table 2, alongside the exact values from Champ and
Woodall (1987). The ARLs found using the simulation are very close to the exact

calculated values, indicating the simulation is getting results similar to the expected

ARL’s calculated from theory-based methods.

Simulated Exact Results
shift C1 C12 Cc1 C12
0.0 357.7 217.5 370.4 225.4
0.2 308.1 171.5 308.4 177.6
0.4 193.3 108.9 200.1 104.5
0.6 114.1 55.8 119.7 57.9
0.8 71.2 33.0 71.6 33.1
1.0 47.2 18.4 43.9 20.0
1.2 26.9 12.3 27.8 12.8

1.4 17.7 8.3 18.3 8.7
1.6 12.2 5.8 12.4 6.2
1.8 8.9 4.2 8.7 4.7
2.0 6.3 3.5 6.3 3.6
2.2 4.5 2.9 4.7 3.0
2.4 3.5 2.3 3.7 2.5
2.6 3.0 2.0 2.9 2.1
2.8 2.5 1.9 2.4 1.9
3.0 2.0 1.6 2.0 1.7

Table 2 ARL's from simulation for three-sigma control chart and C12 runs rule, along with exact ARL's
calculated by Champ and Woodall (1987).
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4 Simulation Results for Non-Normal Data

The simulation was then applied to the Uniform, Double-Exponential, and Log-
Normal distributions to explore the effect of drawing samples from non-normal
distributions. The results for the symmetric distributions are shown in Table 3. The
ARLs for shifts in process mean greater than 0.6 standard deviations are very similar
when samples are drawn from the three different distributions. For samples drawn
from data that is distributed uniformly when the shift is less than 0.6, ARL’s tend to be
greater. For a process that is on target, the simulated ARL is 71.2% greater for uniformly

distributed data than for normally distributed data.

Exact Double
Shifts Normal | Uniform | Exponential
0.0 225.4 385.9 122.9
0.2 177.6 256.7 110.2
0.4 104.5 117.7 80.1
0.6 57.9 55.5 52.4
0.8 33.1 32.1 33.7
1.0 20.0 18.5 20.6
1.2 12.8 12.1 13.4
14 8.7 7.8 9.0
1.6 6.2 5.6 6.3
1.8 4.7 4.3 4.5
2.0 3.6 3.5 3.5
2.2 3.0 2.8 2.9
2.4 2.5 2.3 2.4
2.6 2.1 2.1 2.0
2.8 1.9 1.9 1.8
3.0 1.7 1.6 1.6

Table 3ARLs from simulation for Uniform and Double Exponential Distributed data compared to the exact
results for normal data from Champ and Woodall (1987). Mean and Standard Deviation used in simulations
are the same for all distributions.
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However, when the data is sampled from a Double Exponential distribution,
shifts in mean less than 0.6 tend to have smaller ARLs. When the process is on target,
the simulation indicates the ARL will be about 45.5% smaller when data comes from a

Double Exponential distribution compared to normally distributed data.

Positive
Shifts Negative Shifts
Shift ARL Shift ARL
0.0 183.3 0.0 182.8
0.2 120.1 -0.2 196.4
0.4 75.0 -0.4 147.6
0.6 45.2 -0.6 80.7
0.8 29.3 -0.8 41.0
1.0 18.1 -1.0 21.6
1.2 12.1 -1.2 12.3

1.4 8.6 -1.4 8.5
1.6 6.2 -1.6 5.8
1.8 4.4 -1.8 4.3
2.0 3.6 -2.0 3.4
2.2 3.0 -2.2 2.7
2.4 2.4 -2.4 2.3
2.6 2.1 -2.6 2.0
2.8 1.8 -2.8 1.8
3.0 1.7 -3.0 1.6

Table 4 ARL for data sampled from a Log-Normal distribution for positive and negative shifts in process
mean. Mean and standard deviation were the same as for the others.

When data are sampled from a skewed distribution, such as the Log-Normal
distribution, the simulation shows that there is a slight difference in ARLs for small shifts
below the mean compared to shifts above the mean. The simulation results are shown
in Table 4. When the shift is negative 0.2, for example, the ARL tends to be greater than

the ARL for Log-Normal data when the process is in control, but the ARL for a positive
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0.2 shift is less than the in control ARL. For shifts between 0.2 and 1.0, negative shifts
tend to have a greater ARL than for positive shifts in process mean. For shifts in process
mean greater than 1.2, either positive or negative shifts yield similar ARL’s as for data
sampled from a normal distribution. When the process is on target, the ARL is less than

under the assumption of normality, about 183 compared to 225 under normality.
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5 Conclusion and Suggestions for Further Research

The simulation produced ARLs in agreement with those published by Champ
and Woodall (1987) for the Shewhart Control Chart with three sigma control limits
combined with runs rule number two. These results are evidence that the simulation
method can be used to explore average run lengths for non-normally distributed data.
The simulation applied to non-normally distributed data showed that when the data
come from symmetrical distributions such as uniform or double exponential, the ARLs
for shifts in process mean greater than 0.6 standard errors are about the same as for
samples taken from normally distributed data. However, when the process mean is on
target, or shifted up to 0.6 standard errors from the target, the ARLs are smaller in the
double exponential case than for normally distributed data, but larger in the uniform
case. These differences are probably due to the longer tail in the double exponential
distribution, and shorter tail in the uniform distribution, when compared to the normal
distribution.

The implication is that non-normally but symmetrically distributed data will
primarily affect the ARL for processes on target or only having a small shift from the
target mean. Larger shifts do not appear effect the ARL compared to the normal
assumption ARL, according to the simulation results.

When data are sampled from the lognormal distribution, there are differing
effects on ARL’s depending on whether the shift is positive or negative and has
magnitude between 0.2 and 1.0 standard errors. For shifts greater than 1.0 or -1.0

simulation shows that the ARLs are approximately the same as the other distributions.
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Quality managers may want to verify whether the data they are sampling comes
from normally distributed data, because of the effect of non-normality on ARLs. In
addition, future research could use simulation studies to study the effects of non-
normality on the other runs rules, helping managers to choose which rules will be more
effective for quality management. In addition, the effects of other non-normal
distributions with interesting properties could be studied, as well as the effect of small

sample sizes combined with non-normal distributions.
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Appendix: R Code

“{R ARL.C12}
library(dplyr)
library(smoothmest)

arl.C12<-function(muX, sdX, nX, num.sim=1000, dist.type = "normal", upper=TRUE){
seX<-sdX/sqrt(nX) #standard deviation of X-bar
#set up control chart

UCL<-muX+3*seX
LCL<-muX-3*seX
UWL<-muX+2*seX
LWL<-muX-2*seX

#number sample standard deviations the process has shifted from the target mean
ifelse(upper, shifts<-seq(from=0, to=3, by=0.2), shifts<-seq(from=0, to=-3, by=-0.2))

#set up variables
run.lengths<-seq(1:num.sim)
C12.arl<-seq(1:length(shifts))

for (d in shifts) {
for (i in 1:num.sim) {

run<-0
signal<-0
count.C2<-0

while (signal==0) {
if(dist.type=="normal"){samp.X<-rnorm(nX, muX+d*seX, sdX)}
else if(dist.type=="uniform"){
unif.a<-muX+d*seX-sqrt(3*sdX)
unif.b<-muX+d*seX+sqrt(3*sdX)
samp.X<-runif(nX, unif.a, unif.b)}

else if(dist.type=="lognorm"){
Inorm.mean<-log(muX+d*seX)-0.5*log((sdX/(muX+d*seX))*2 + 1)
Inorm.sd<-sqrt(log((sdX/(muX+d*seX))*2 + 1))
samp.X<-rlnorm(nX, Inorm.mean, Inorm.sd)}
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else {samp.X<-rdoublex(nX, muX+d*seX, sqrt(sdX/2))}

mean.X<-mean(samp.X)

run<-run+1

if(mean.X>UCL| mean.X<LCL) {signal<-1}
if(run==1){mean.x1<-mean.X}

else{

if(between(mean.X, LCL, LWL))

{
if(between(mean.x1, LCL, LWL)|between(mean.x2, LCL, LWL)) {signal<-1}

}
if(between(mean.X, UWL, UCL))

{
if(between(mean.x1, UWL, UCL) |between(mean.x2, UWL, UCL)) {signal<-1}

}

mean.x2<-mean.x1
mean.x1<-mean.X

}
}
run.lengthl[i]<-run
}

C12.arl[abs(d)*5+1]<-mean(run.length)

}

C12<-cbind(shifts, C12.arl)
return(C12)

}

"{R C12norm}

#Mean and standard deviation and sample size
muX<-5 #mean

sdX<-1 #standard deviation

nX<-5 #sample size
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C12arl.norm<-arl.C12(muX, sdX, nX)
Cl12arl.norm

\\\]

“{R C12unif}

muX<-5 #mean
sdX<-1 #standard deviation
nX<-5 #sample size

C12arl.unif<-arl.C12(muX, sdX, nX, dist.type = "uniform")
C12arl.unif

"{R C12logN}

muX<-5 #mean
sdX<-1 #standard deviation
nX<-5 #sample size

C12arl.logNUpper5<-arl.C12(muX, sdX, nX, dist.type = "lognorm", upper = TRUE)
C12arl.logNUpper5

{R C12Dexp}

muX<-5 #mean
sdX<-1 #standard deviation
nX<-5 #sample size

C12arl.Dexp<-arl.C12(muX, sdX, nX, dist.type = "Dexp")
C12arl.Dexp

"{R ExportData}

write.csv(C12arl.Dexp, file = "C12arlDexp.csv", row.names = FALSE)
write.csv(C12arl.norm, file = "C12arINorm.csv", row.names = FALSE)
write.csv(C12arl.unif, file = "C12arlUnif.csv", row.names = FALSE)
write.csv(C12arl.logNLowers5, file = "Cl12arllogNLower5.csv", row.names = FALSE)
write.csv(C12arl.logNUpper5, file = "C12arllogNUpper5.csv", row.names = FALSE)
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