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Abstract

Experimental design is a widely implemented branch of statistics today, especially in the fields

of agriculture, industry, and natural sciences. However, experimenters often find themselves

designing poor experiments that result in the waste of precious time and resources. While there

are ways to remedy this issue to some extent by using fractional factorial designs that look at

minimizing the necessary number of experimental runs to estimate all factors, other issues can

arise. Uniform space-filling designs can be thought of as a type of fractional factorial design in

that they significantly reduce the necessary number of experimental runs. The UD’s have their

greatest use when we see issues like an unknown relationship between the predictors and the

mean response of interest or possible having a large numbers of factors and factor levels leading

to insufficient information when a model is unknown. There are five methods (Good Lattice

Point Set, Good Point Sets, and Halton’ H-Set) that will be discussed in this paper that can be

used to generate uniformly spaced points, and simple examples are provided for each. The basic

methodology is similar to that of Monte Carlo approximation, but does differ slightly. While it

is nearly impossible to always choose a best candidate design by looking at simple plots, there

are measures of uniformity that help us determine mathematically, which design results in the

most uniformly spaced points throughout the design region. These methods, while not always

being intuitive and computationally accessible, provide experimenters with optimal experimental

designs to estimate effects when normal underlying model assumptions cannot hold.

Introduction

Experimental design is one of the most widely used applications of statistical methodology

currently in use. Having a response of interest and studying how that response can be affected by

certain factors helps experimenters analyze many things. There are many types of experimental

designs including but not limited to full factorial designs, fractional factorial designs, and response

surface designs. Experimental designs have been extensively and widely applied in many different

scientific areas to draw inferences. In general, the goal is for the design to be experimentally efficient.

In other words, one would attempt to minimize the number of experimental runs needed to provide

sufficient and accurate information. To optimize this experimental process, it is important to analyze

the relationship between the response of interest (Y) and the vector of experimental inputs (X). The

issue at hand deals with not being able to model this underlying relationship as that is one of the
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most common issues statisticians face with experimental design. A commonly assumed relationship

between a response variable and certain predictors is that of linearity. This means that we can write

our response as a linear combination of the predictor variables where,

Y = βX + ε

After assuming the model form, we then adopt other common assumptions as well. It is

common to assume the independence of errors, homoscedasticity (constant variance) and the normal

distribution of errors. Even when these assumption are met, issues may still arise if the experiment

deals with a large number of factors giving many possible combinations of factor levels. These issues

can be classified generally with

• an unknown relationship between the predictors and the mean response of interest,

• having a large numbers of factors and factor levels leading to insufficient information when a

model in unknown, and

• imposing assumptions about the error distribution even for an unknown model

This is where we will examine some nice properties of certain space-filling designs, such as

Uniform Designs, and how they can help remedy these issues. These designs have been used suc-

cessfully many times to draw statistical inferences for experimental designs when the relationship

between the response and factors is unknown or not justifiably linear. Uniform Designs differ from

other experimental designs in that they do not use the common combinatorial principles but instead,

look st the spread of the design points throughout the possible domain of the experiment to help with

estimation for many possible models.

In classical experimental design methods, statisticians often assume the form of an under-

lying model, and then use this assumption to estimate the parameters. The design that results will

be used to estimate these model parameters in a way that results in high precision (Fang and Lin,

2003). Are these assumptions guaranteed to be correct in every scenario? Intuitively it makes sense

that these underlying relationships are not always specified correctly, and this is where space-filling

designs have their most use. When using Uniform Designs, the designer is no longer forced to specify

the form of the underlying model as that is not how space-filling designs operate. Instead, the goal is

to collect data points that will accurately represent the entire design space. This allows an individual
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to fit different models from the same data points without restricting researchers to a single option.

Another very nice property of Uniform Designs becomes apparent when dealing with a high number

of factors and factor levels. Commonly, an experimental design is used with the hope of maximizing

the number of factors to be analyzed while still keeping the number of required experimental runs as

few as possible. One can think of these space-filling designs as a type of fractional factorial design as it

reduces the number of runs significantly while still providing useful information about the relationship

between the input variables and the measured output response (Fang et al., 2000). As researchers

aren’t forced to specify the form of the model for the design, this is a desired situation to be in. When

dealing with a design having n points, Uniform Designs will allow one to include the largest possible

number of factor levels. These are just a few of the desired properties of space-filling designs.

These space-filling Uniform Designs are based off the theoretical ideas of number-theoretic

methods (combinations of both numerical analysis and basic number theory) which, while not exactly

identical to many Monte Carlo methods, are actually quite similar. The main difference between

these two methods is the scatter of design points throughout the experiment’s domain. Monte Carlo

methods choose design points scattered at random,while in comparison, Uniform Designs spread

design points that are more uniformly (as the name would imply) scattered. Visually, Talke (2012)

does a great job showing this difference for a very simple case below.

Figure 1: Design points using a uniform design with good lattice point generator of (34;1,13) versus
a Monte Carlo approach for N = 34 points

What is the benefit of uniformly scattering points versus a random approach? If we define E(h(x))
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to be the expected value of the mean response for a given input and the sample mean hN = 1
N

∑
Y (x)

for the case when we do not have random error present. This can be viewed in the rate-of-convergence

of our mean response where we see the Monte Carlo approach yields a rate mathematically equivalent

to ∣∣∣∣E(h(x)−
∑
Y (x)

N

∣∣∣∣ ≤ O[N−1/2]

while the uniform take on spreading points would give us∣∣∣∣E(h(x)−
∑
Y (x)

N

∣∣∣∣ ≤ O[N−1(log(N))s]

From the results above, we see that uniformly spreading design points across a space results in a

better rate-of-convergence giving higher coverage for an experiment with n factors being generated in

the n-dimensional unit cube Cn = [0; 1]n. If we are working with the experimental domain Cn with

n experimental runs in our design, then the goal when assessed by a discrepancy measure is to find

a design PN = (X1, ..., XN) where Xi ∈ Cn such that the deviations between the true and estimated

approximation model is as ”small” as possible for all X ∈ Cn (Talke, 2012). The easiest way to do

this is to scatter the design points uniformly across the design space (Fang and Wang, 1994). When

using these space-filling designs regardless of methods used, generating vectors need to be chosen

carefully as choosing a poor generator can have an effect on how the points fill the space. Once gain,

Talke (2012) shows this scenario in the following plot:

It is important to measure this discrepancy because sometimes it is not possible to visually choose

the better design just based on the uniform scattering provided by our generating vector. In Figure 2,

four different generators were used. Designs (a) and (b) clearly look better at first glance than designs

(c) and (d) because the points appear more uniformly scattered without any large open spaces. One

can look at the four designs above and easily see the poor results obtained from using the design

generators in (c) and (d), but when looking at designs (a) and (b) which are far more uniform in

nature, it is hard to choose one as being a ”superior” option. This is where discrepancy measures

have their usefulness. There are many possible measures to assess the lack of complete uniformity,

and those will be discussed later in further detail.

Many uniform designs exist as possible options to be used in place of classical experimental

designs (e.g., factorial designs, fractional factorial designs, etc...). Commonly, the good lattice point

set is used but is not the only option. In the next section, we will see examples of this method as well
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Figure 2: 21 design points for a uniform design with four different generators

as others such as good point methods (the square root sequence, power of p, and cyclotomic field set)

and the H-set by Halton.

Methods

1 Measures of Uniformity

As the name ”Uniform Space-Filling Design” implies, the goal with these methods is to

produce a set of design points that are uniformly spaced in our experiment’s design region. Five

different methods of filling designs with points in a uniform manner will be reviewed. These methods,

however, do not all produce results of equal uniformity. Just because points are spread uniformly

throughout a space, there is still a need to assess the uniformity of spreading. This is where the

measures of uniformity have their use. Many different ways to measure this strength exist including

different versions of the L2 and L2 star discrepancy measures, as well as methods based on metric

distances between points in the design space. Here in this paper, we will be analyzing the following

few different measures of uniformity: the discrepancy measures briefly introduced earlier that are

described by Fang and Wang (1994), methods using the metric distance between points discussed by

Borkowski and Piepel (2009), and MSE measurements. These methods will be discussed for designs
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in the unit cube Cn and how they can be generalized to design regions all rectangles of the form [a, b).

Discrepancy measures allow us to to analyze how well a set of N points, S = (x1, ..., xN)

represent some multivariate distribution F (x) in Rn. We can define the empirical distribution of

these points in the following manner:

FN(x) =
1

N

N∑
i=1

Ii(xi ≤ x)

when we define our indicator functions to be

Ii(xi ≤ x) =

 1 : xi ≤ x

0 : xi > x

When we have a multivariate distribution F (x) and a set of points in Rn, Fang and Wang (1994)

describe the F-discrepancy of these points to be

DF (N) = sup|FN(x)− F (x)|

What exactly is this F-discrepancy, and how can it be used? It is seen that this measure is

analyzing how well our set of N points represent the distribution F (x). This discrepancy value acts

as the Kolmogorov-Smirnov test statistic when testing goodness of fit for our distribution. When

looking at a more specific use of this discrepancy (in the case of uniform space-filling methods), the

discrepancy of these N points S = (x1, ..., xN) is

D(N,S) = sup

∣∣∣∣M(γ, S)

N
− v([0, γ])

∣∣∣∣
The above relationship will hold for γ ∈ Cn, and M(γ, S) is the number of points that will satisfy

xk ≤ γ for k = 1, 2, .... Also, v[0, γ]) is the volume of the hyper-rectangle defined by [0, γ]. For

simplicity, this discrepancy will be denoted as D(N). Often, it is difficult to find a set with the

smallest discrepancy when n ≥ 2 since the distribution of points tends to be very complicated.

Therefore, the goal is to find sets with asymptotically small discrepancies (Fang and Wang, 1994).

The star discrepancy D∗ is the measure that expands the D(N) discrepancy results to more
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general rectangular regions. Here, for a set of S points satisfying the requirement that xk ∈ [a, b),

D∗(N,S) = sup

∣∣∣∣M([a, b), S)

N
− v([a, b))

∣∣∣∣
for the set of rectangles [a, b) that satisfy 0 ≤ a ≤ b ≤ 1. The star discrepancy and the original

discrepancy described above are very similar and satisfy the relationship D(N) ≤ D∗(N) ≤ 2nD(N).

Next, we take a look at the approach using metric distances proposed by Borkowski and Piepel

(2009). Assume we have the following design matrix for N points in the region Cn:

X =



x1

x2

x3

.

.

.

xN


(1)

We can define the distance between this design matrix and any point in our region Cn to be

d(x,X) = min
√

(x− xj)(x− xj)T

When dealing with a design of N points, we calculate a distance for each of the nearest matrix

points to the N points in our design region. Out of all these calculations, the smallest is kept. There

are different criteria that use d(x,X) to measure space-filling properties of a design. More specifically,

Borkowski and Piepel (2009) define the following three measures:

• The root mean square distance is defined as RMSD(X) =
√
E[d(x,X)2]

• The average distance is defined as AD(X) = E[d(x,X)]

• The maximum distance is defined as MD(X) = max(d(x,X))

These methods follow just as their names imply. For instance, the root mean square distance

looks at taking the square root of the square mean distance between any point in the design region

(x) and the design matrix (X). The average distance looks at taking the average distance between
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any point in the design region (x) and the design matrix (X). Lastly, the maximum distance method

looks at the maximum distance between any point in the design region (x) and the design matrix

(X).

The last measure of uniformity we will discuss looks at the mean square error (MSE) of

our set of design points. Suppose we have our set of design points, S, such that

d(x, xk(x)) = minimum d(x, xj) 1 ≤ j ≤ N

We then can analyze the integral of d(x, xk(x))
2 over the n-dimension cube design region (Cn) to

measure how uniform the design points are being spread. The resulting measure stems from

MSE(S) =

∫
Cn

min d(x, xj)
2dx

In the past the estimation of discrepancy was obtained usually by neglecting some terms of

lower orders, this may lead to a large error when N is small (Fang and Wang, 1994). Often, the glp

method is the best as determined by the measures of uniformity whch is consistent with the idea that

this method is good for small n. The reason for this is because the glp method has more than one

candidate of design generators for each design size. At least one of these generators usually leads to

good coverage rates of the region of interest. For large n, the glp method produces excellent designs,

but it is computationally expensive and often not feasible to implement (Talke, 2012). For a table

analyzing a few measures of uniformity for simple designs of 10 runs to estimate 2 factors, see the

Appendix below.

2 Good Lattice Point Sets

A nice property of uniform space-filling designs is that they can be applied to different ex-

perimental regions such as cubes, spheres, etc... As stated earlier, the idea of uniform space-filling

designs does not boil down to a single concept. Rather, multiple different types of space-filling designs

exist in this family. One of the most efficient and commonly-used space-filling methods is called the

good lattice point (glp) method. Computation of this method is fairly straight forward. Begin with a

generating vector say h = (h1, ...hn) where n represents the number of experimental factors in a design

with N runs. This method uses the concept of modular arithmetic such that the design rows can be
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calculated by jh = (jh1, ...jhn) mod N , for j = 1, 2, ..., N . A good lattice point set will result in a final

row of (N, ..., N), and when hj and N are coprime meaning the gcd(hj, N) = 1, we see the resulting

jth column of the design is merely a permutation of 1, ..., N (Zhou and Xu, 2015). To deter-

mine the number of generators to use, we introduce Euler’s function. This function’s values equal the

maximum possible number of hi components for a given number of N runs. Mathematically, Euler’s

function is

p(N) = N

(
1− 1

p1

)(
1− 1

p2

)
...

(
1− 1

pr

)
where p1× ...×pr help form the prime decomposition of N (Fang et al., 2006). Normally, in a regular

design, we would see elements in a design space take on values in 0, 1, ..., N − 1, but according to

Zhou and Xu, if we replace 0 elements in our set with N , we see that glp sets contain elements taking

on values in 1, ..., N . While changing 0′s to N ′s will indeed change the structure and properties of

our design, we will see later that it does not have an effect on some of our discrepancy measures of

uniformity.

Once we have defined our generating vector h, we can create an n×k matrix U using modular

arithmetic operations. The elements in this matrix can be defined as uij = ihj mod(N). From this

generated matrix U , we form our design matrix X. Using generators, we can form the jth row in our

design matrix X = (xi1, ..., xik) where

xij =
2uij − 1

2N
i = 1, ..., N j = 1, ..., k

There may be many possible designs that result from this process even for the same exact generators.

For instance, if we take a subset of columns from our design matrix X, we create a k−factor uniform

design with N points. Intuitively, we see then that different subsets of columns of X will result in

different uniform designs. The good lattice point method will look all the possible designs resulting

from these different subsets. What design then do we choose? Fang and Wang (1994) state that

taking the the first column of our generating matrix U can be selected because this will make the

number of possible designs smaller and easier to work with. Once we have selected this first column,

we need only select the remaining columns of our subset from the k − 1 remaining columns from our

design matrix.

Recall from Figure 2 that some uniform designs will be better than others (and largely so at

that). To determine which of the uniform designs to use, we will address this analyzing the different
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measures of uniformity in a later section, but for the time being, we can define discrepancy of a glp

set to be

D(N) < c(n)p−1(logp)n

where c(n) is a constant dependent on the number of our factors, and p is our chosen generating

prime number(s). Now that we have discussed the theoretical approaches to constructing a space-

filling design using the glp method, let’s consider an example. Say we have an experiment with

N = 10 runs and n = 3 factors in the design region in C3 = [0, 1]3. The prime decomposition of N ,

10 = 21 × 51, will result in primes of p1 = 2 and p2 = 5. Euler’s result from these primes give us

p(10) = 4. Thus, a good generating vector for this analysis could possibly be h = (1, 3, 7, 9). This

would give us

U4 =



1 3 7 9

2 6 4 8

3 9 1 7

4 2 8 6

5 5 5 5

6 8 2 4

7 1 9 3

8 4 6 2

9 7 3 1

10 10 10 10



(2)
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Keeping the fractional component for our X design matrix using xij =
2uij−1
2N

would result in the

following design matrix for this example:

X4 =



0.05 0.25 0.65 0.85

0.15 0.55 0.35 0.75

0.25 0.85 0.05 0.65

0.35 0.15 0.75 0.55

0.45 0.45 0.45 0.45

0.55 0.75 0.15 0.35

0.65 0.05 0.85 0.25

0.75 0.35 0.55 0.15

0.85 0.65 0.25 0.05

0.95 0.95 0.95 0.95



(3)

Now, as we have 3 factors of interest, we can see that there are three possible designs in this glp

example. Three factor uniform designs are any of the 10 × 3 matrices created by taking a subset of

3 columns from our X design matrix above. Remember that the first column is always chosen as

specified by Fang and Wang. Thus, we merely need to choose two remaining columns from the three

left giving us a total of three possible designs. To choose the best of these three designs, plots of all

candidate designs can be used along with measures of uniformity to choose the most optimal design.

A plot of one candidate design using glp methods for estimating two factors with 10 runs is shown in

the Appendix below.

3 Good Point Sets

While computationally convenient and common to implement, glp methods aren’t always the

most desirable choice of a space-filling uniform design. This leads us to the following methodology to

discuss called the good point methods. Three good point (gp) methods will be considered: cycolotomic

fields, square root sequence, and root of a prime. The main difference between these good point

methods and the glp method previously described shows itself in the mathematical calculations in

obtaining the generators and design points. Here, define γ = (γ1, ...γn) where the resulting set equals
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(γ1j, ..., γnj). The discrepancy for the good point set is such that

D(N) ≤ c(γ, ε)N−1+ε

where γ refers to a single good point (Fang and Wang, 1994). First, the cyclotomic field method will

be analyzed.

For cyclotomic fields, we will define the following set of points:

γ = k

([
2cos

2π

p

]
,

[
2cos

4π

p

]
, ...,

[
2cos

2nπ

p

])

where p is some prime number ≥ 2n + 3 and k = 1, 2, ...10. This method is straight forward. To

analyze this good point method with an example, consider the earlier design in which we have N = 10

runs and n = 3 factors. Here, we need a prime number that is ≥ 2n+ 3. For this example, this means

the first candidate prime we could consider is p = 11. If we use p = 11, we will obtain the following

set of design points where we keep only the fractional component of our cosine evaluations:



.6825 .8308 .7154

.3650 .6617 .4308

.0475 .4925 .1462

.7300 .3233 .8616

.4125 .1542 .5770

.0950 .9850 .2924

.7775 .8158 .0078

.4601 .6466 .7232

.1426 .4775 .4386

.8251 .3083 .1540



(4)

A plot of one candidate design using CF methods for estimating two factors with 10 runs

is shown in the Appendix below.

Next, we will look at the square root sequence method of producing uniform space-filling

design points. A very easy method computationally, this sequence is formed by taking

γ = k(
√
p1,
√
p2, ...,

√
pn)
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where all pj are different primes (usually the first n primes). Keeping with our originally chosen design

with N = 10 runs and n = 3 factors, we can build the following design matrix using the fractional

part of the products with the first 3 primes (2, 3, and 5) to find our design points with k = 1, 2, ..., 10.



.4142 .7321 .2361

.8284 .4641 .4721

.2426 .1962 .7082

.6569 .9282 .9443

.0711 .6603 .1803

.5853 .3923 .4164

.8995 .1244 .6525

.3137 .8564 .8885

.7279 .5885 .1246

.1421 .3205 .3607



(5)

A plot of one candidate design using SRS methods for estimating two factors with 10 runs

is shown in the Appendix below.

The last good point method to introduce looks at taking the (n + 1)th root of a prime

number to determine the space-filling design points. In other words, if we are working with some

prime p, and we define q = p1/n+1, then we obtain

γ = (q, q2, ..., qn),

and this will lead us to the following results when using n = 3 factors and N = 10 runs in our

experiment with chosen prime of p = 2:
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

.1892 .4142 .6818

.3784 .8284 .3636

.5676 .2426 .0454

.7568 .6569 .7272

.9460 .0711 .4090

.1352 .5853 .0908

.3244 .8995 .7725

.5137 .3137 .4543

.7029 .7279 .1361

.8921 .1421 .8179



(6)

A plot of one candidate design using power prime methods for estimating two factors with

10 runs is shown in the Appendix below.

4 Halton’s H-set

We have currently looked at the good lattice point method as well as three ”good point”

methods, but it doesn’t stop there. Around 1960, Halton proposed another space-filling method that

focuses on the p-adic representation of natural numbers (Fang and Wang 1994). The mathematics

behind this method are a bit more complex than the methods we have already discussed, therefore,

further detail should be analyzed. If we have a prime p ≥ 2, we can write out representations of p

digits for any other natural number k. Thus, it can be displayed that

k = b0 + b1p+ b2p
2 + ..+ brp

r

where 0 ≤ bi ≤ p. Say we are dealing with a small space such that we have a rational number

c ∈ (0, 1). The unique representation for c is as follows:

c = c0p
−1 + c1p

−2 + ..., 0 ≤ ci ≤ p− 1
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There is a 1 − 1 correspondence between the rational numbers in the space (0, 1) and the positive

integers. This relationship allows us to establish that for any integer k, we can write

yp(k) = b0p
−1 + b1p

−2 + ...+ brp
−(r+1)

These points help build the H-set defined by Halton where xk = (yp1(k), ..., ypn(k)) for k = 1, 2, 3, ..., 10

Halton showed that this set formed by the first m points has the following discrepancy:

D(m) ≤ O(m−1(logm)n)

which shows that the H-set is in fact uniformly scattered in the space Cn (Fang and Wang, 1994).

We can look at a simple example for when p = 2 and k = 1, 2, ..., 8. The results are as follows:

1 2 4 8

1
21

1
22

1
23

1
24

k b0 b1 b2 b3 yp(k)

1 1 0.5

2 0 1 0.25

3 1 1 0.75

4 0 0 1 0.125

5 1 0 1 0.625

6 0 1 1 0.375

7 1 1 1 0.875

8 0 0 0 1 0.0625

9 1 0 0 1 0.5625

10 0 1 0 1 0.3125

Now, we can take a look at the set of 10 points that would form the H-set for when we have n = 3

factors and N = 10 runs. Here, we will use the first three prime numbers to generate our points.

Thus, p1 = 2, p2 = 3, and p3 = 5.
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

.5000 .3333 .2000

.2500 .6667 .4000

.7500 .1111 .6000

.1250 .4444 .8000

.6250 .7778 .0400

.3750 .2222 .2400

.8750 .5556 .4400

.0625 .8889 .6400

.5625 .0370 .8400

.3125 .3704 .0800



(7)

A plot of one candidate design using H-set methods for estimating two factors with 10 runs

is shown in the Appendix below.

A few Details and Examples

While being computationally intensive/expensive, the glp methodology discussed in this paper

often yields the most optimal uniform design. Talke (2012) generates a good example to see how

uniform data can be used. For instance, if we are interested in estimating two factors with N = 9

runs, the best resulting design using the glp methodology yields a generating vector of (9; 1, 4). This

specific design can be seen in the table below. It is also important to consider randomizing the order

of the 9 experimental runs when implementing.
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Fields like agriculture, industry and natural sciences are areas of science that tend to rely on

the important of statistical experimental design. However, bad experimental designs are frequent, and

they usually result in wasting good resources due to their improper implementation. While uniform

designs do help alleviate much of this issue as they allow for the maximum number of possible factors

to be analyzed with the fewest possible number of runs, they aren’t exactly straightforward. The

reason is because uniform space-filling designs are not orthogonal. Thus, the linear coefficients in the

model are not uniquely estimable. Talke (2012) notes that one way to perform the analysis while

still bypassing this issue often requires the use of R packages like the R Development Core Team

and MASS packages to perform the stepwise regression analysis to estimate the model effects from a

model chosen using the AIC criteria.
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Appendix

Figure 3: Plot of a Good Lattice Point Design for N = 10 runs and n = 2 factors with generating
primes of (1,3)

Figure 4: Plot of a Cyclotomic Field for Design N = 10 runs and n = 2 factors with generating primes
of (2,3)
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Figure 5: Plot of a Square-Root Sequence Design for N = 10 runs and n = 2 factors with generating
primes of (1,3)

Figure 6: Plot of a Power Prime Design for N = 10 runs and n = 2 factors with generating primes of
(1,3)
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Figure 7: Plot of an H-set Design for N = 10 runs and n = 2 factors with generating primes of (2,3)

Figure 8: A side-by-side comparison of the five different methods for a design N = 10 runs and n = 2
factors
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Design Average Distance Maximum Distance

Good Lattice Point 0.1333 0.3498

Cyclotomic Field 0.1564 0.4296

Square-root Sequence 0.1411 0.3597

Power Prime 0.1620 0.4403

Halton’s H-set 0.1471 0.4299
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