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Abstract

t-Distributed Stochastic Neighborhood Embedding (t-SNE) is a dimension reduction
technique used to visualize high dimensional data. In application of the t-SNE algorithm
the user is required to input a parameter named perplexity. t-SNE visualizations differ
on the perplexity input, however prior suggestions for using t-SNE only provide rough
guidelines in selecting the input value. This paper explores one method of selecting
the perplexity input value; minimizing the Kullback-Leibler (KL) divergence. To do
so, three simulated data sets with varying degrees of high dimensional structure and a
subset of the MNIST data set are explored. Visual inspection is used to compare t-SNE
maps created using the minimization of the KL divergence method to manual selection.
Through this analysis it is shown that minimization of the Kullback-Leibler divergence
does not necessarily lead to the best t-SNE map both at a given perplexity and across
perplexities.

I. Introduction

The importance of statistics lies in its ability to extract information in the face of
uncertainty. Traditionally, science has relied upon natural observation and theory to create
questions and subsequent hypotheses. Following that, data are gathered and analyzed through
statistical methods to arrive at a conclusion. Thus, the value of statistics has been based on
its inferential abilities. This model of science, while important, is quickly being circumvented
by a new approach. One where both the answers and the questions are data driven. When
this new model is properly applied, one set of data spawns a question and another set is used
to formulate conclusions. The exploratory techniques of this statistical paradigm have merit
in their abilities to extract these questions, as they are intended to gain insight into data.
Such techniques will become increasingly relied upon as time progresses and the amount of
quantifiable information grows. Today’s world is a vast network of data generators where
technology has transformed most actions of everyday life into data that need to be explored.

The size (number of observations, N) and dimension (number of measured attributes,
Q) of data sets are only going to increase as time progresses. Increasing the size of a data set
creates issues in terms of computing power. Whereas, when dimension increases, an entirely
new set of challenges present themselves. These problems are often summarized as the curse
of dimensionality. The curse of dimensionality, in lay terms, states that things do not act
as expected in high dimensions. To illustrate this peculiar phenomenon, consider a circle
and a sphere, both with the same radius. Which has the larger volume? Clearly the sphere.
This would intuitively suggest that if the radius were held constant, as the dimension of a
circle increases, the volume would also increase. This however is not the case. Examining the
equation for the volume of a hypersphere, Vd(R) = πd/2

Γ(d/2+1) ∗R
d, where d is the dimension of

the sphere, and R is radius, indicates that if the radius is held constant at 1, the volume of
the hypersphere will be maximized at a dimension of 5. Then as the dimension increases the
volume decreases (Zaki and Meria, 2014). This curse of dimensionality does not stop there,
but creates a host of problems that must be overcome. One way to handle such issues is to
use dimension reduction techniques, which, as the name suggests, reduce the dimensionality
of the data set being analyzed.
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The focus of this paper is on one dimension reduction technique, t-Distributed
Stochastic Neighborhood Embedding (t-SNE). t-SNE was first introduced by van der Maaten
and Hinton (2008). The authors originally intended t-SNE to be used as a tool for visualizing
high dimensional data in a lower dimensional projection, but the technique has been extended
to other applications including classification and image retrieval (Xie et al; 2011). t-SNE has
become a vastly popular technique, evident by the 7,498 citations the original paper has on
Google Scholar, as of 4/6/2019. However, this does not necessarily mean it operates without
any issues across all these applications. Along with describing the inner workings of t-SNE,
this paper will explore one of the more interesting, and less well-explained aspects of t-SNE,
the user defined parameter, perplexity. The method of choosing an input value for perplexity
is not explained well, rather it is stated “performance of SNE [and it turn t-SNE] is fairly
robust to changes in the perplexity” (van der Matten and Hinton, 2008). However in some
applications, the choice of perplexity will lead to differing results. This paper will explore one
potential method for choosing the perplexity input; selecting perplexity based on minimizing
the Kullback-Leibler divergence.

To accomplish these tasks this paper contains the following sections: A general
explanation of the t-SNE algorithm; a brief comparison to another dimension reduction
technique; a description of the data used in this analysis; methodology behind the procedures
that were used to examine the perplexity parameter; and finally, the results of the analysis
and a discussion of both the perplexity parameter and t-SNE in general are considered.

II. t-SNE Algorithm

The intent of t-SNE is to produce a low dimensional projection that retains the local
structure of the high dimensional data that are being projected. That is, t-SNE aims to
produce a visualization in either two or three dimensions that retains the groupings or other
structures in the data that were present in the high dimensional space (van der Matten and
Hinton, 2008). In general the t-SNE algorithm can be broken up into four rough steps. First,
it randomly projects the high dimensional data points into either two or three dimensional
space. Then, similarities between each point within both the high dimensional space and
the low dimensional space are calculated. Once the similarities are obtained, the associated
joint distributions that are formed by these similarities are compared using Kullback-Leibler
divergence. Finally, gradient descent is used to adjust the lower dimensional projections
with the aim of minimizing the Kullback-Leibler divergence between the joint distributions
associated with the high and low dimensional similarities (van der Matten and Hinton, 2008).

An optional (though generally used) initialization step before running t-SNE is to
run principle component analysis (PCA) to reduce the number of dimensions in the data. In
doing so, some of the noise in the data is removed and calculation of the distances between
each point is sped up (van der Matten and Hinton, 2008). In the experiments ran in van der
Matten and Hinton (2008), all data were preprocessed using PCA to reduce the number of
dimensions to 30. Then the associated PC scores for the 30 dimensions were extracted and
used as variables in their application of t-SNE. In the R packaged used here (Krijthe, 2015),
this option is controlled through the pca argument.

To calculate the similarities between the high dimensional data points a Gaussian
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similarity of the form pj|i = exp(−||xi−xj ||2/2σ2
i )

Σk 6=iexp(−||xi−xk||2/2σ2
i ) is used (van der Matten, 2014). The pj|i can

be interpreted as the probability that point i is the closest neighbor, in terms of Euclidean
distance, to point j in the high dimensional space (van der Matten and Hinton, 2008). To
simplify the optimization step, a symmetric restriction is imposed such that pij = pj|i+pi|j

2N ,
where N is the size of the data. It is also assumed that pi|i = 0 (van der Matten, 2014).
Of special importance to this paper is the variance term σ2

i , which is calculated by using
a binary search that involves the user defined perplexity parameter (van der Matten and
Hinton, 2008).

To calculate the similarities between the projected low dimensional data points a
Cauchy distribution (t-distribution with 1 degree of freedom) of the following form qij =

(1+||yi−yj)||2)−1

Σk 6=l(1+||yk−yl)||2)−1 is used (van der Matten, 2014). The qij can be interpreted as the probability
that point i is the closest neighbor, in terms of Euclidean distance in the low dimensional
projection, to point j (van der Matten and Hinton, 2008). It is again assumed that qii = 0
(van der Matten, 2014). A Cauchy is used in place of a Gaussian distribution in the lower
dimensional similarity calculation to mitigate the potential for overcrowding that is present
in the earlier version of t-SNE named Stochastic Neighborhood Embedding (SNE) (van der
Matten and Hinton, 2008). Since there is more area in the tails of a Cauchy distribution
in comparison to a Gaussian, observations that are close together are more spread out,
alleviating the overcrowding issue that was present in the prior version (van der Matten,
2014).

Once the similarities have been calculated within both the high dimensional data and
associated lower dimensional projection, the associated joint distributions that these similari-
ties define are compared using Kullback-Leibler divergence. Kullback-Leibler divergence is
defined as KL(P ||Q) = Σi 6=jpijlog(pij

qij
) (van der Matten and Hinton, 2008). By restricting

the distance between points to be symmetric, t-SNE differs in more than one way from its
predecessor, SNE. The optimization can be done on a single Kullback-Leibler divergence that
compares the joint distribution of the high dimensional similarities to the joint distribution
of the low dimensional similarities. In comparison, SNE, which did not require the pairwise
similarities to be symmetric, uses the sum of Kullback-Leibler divergences as the associated
objective function (van der Matten and Hinton, 2008).

Using the Kullback-Leibler divergence as the objective function, t-SNE iteratively
updates the lower dimensional projection using gradient descent. The goal of the optimization
is to make the joint distribution of the low dimensional similarities as close to the joint
distribution of the high dimensional similarities, and thus minimizing the Kullback-Leibler
divergence (van der Matten and Hinton, 2008).

The user defined parameter perplexity is of particular interest to this paper. Mathe-
matically, perplexity is Perp(Pi) = 2H(Pi) where H(Pi), known as Shannon entropy, and is
defined as H(Pi) = −Σjpj|ilog2pj|i, where Pi is the conditional probability distribution of
observation i given all other high dimensional points. Perplexity is thus set by the user, and a
binary search is used to calculate each σ2

i that leads to a conditional probability distributions
for each point Pi that has the defined perplexity (van der Matten and Hinton, 2008). As a
rough interpretation of what perplexity is, van der Matten and Hinton state “perplexity can
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Figure 1: t-SNE maps based on perplexities of 5 (a) and 50 (b) for a sample of n = 1000
observations from the MNIST data set.

be interpreted as a smooth measure of the effective number of neighbors” (van der Matten
and Hinton, 2008).

They also state that “The performance of SNE [and in turn t-SNE] is fairly robust
to changes in perplexity” (van der Matten and Hinton, 2008). Upon further investigation,
this statement does appear overstated. There is typically little qualitative difference between
t-SNE maps produced using perplexities that are close or that are the same in large N data
sets. However all choice of perplexity will not lead to the same results. Figure 1a presents
a t-SNE produced map with the perplexity set to 5, whereas Figure 1b presents a t-SNE
map of the same data, using the same initial random projection, with perplexity set to 50.
Observation of the two plots yields the conclusion that the two maps differ from one another.
This leads to the question of how to set perplexity such that the resulting map is an optimal
representation on the true structure in the high dimensional data.

III. t-SNE Comparison

The t-SNE algorithm aims to create a lower dimension representation of high dimen-
sional data. These representations can be thought of as a map of the high dimensional data.
As with all map projections, information is inherently lost as the number of dimensions is
reduced. An example of this is the Mercator projection, which is responsible for a common
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two dimensional map of the earth. The Mercator projection, originally used for sea navigation,
retains angles between points. However it distorts the size of objects on the map. Specifically,
land masses near the poles are greatly stretched, suggesting they are larger than they actually
are and land masses near the equator are compressed, suggesting they are smaller than they
actually are (Mercator projection, 2019).

t-SNE aims to retain high dimensional structure by keeping points close in high
dimensional space also close in the lower dimensional projection. However, t-SNE loses
information such as position of groups relative to one another. That is, how the groups
are displayed in the low dimensional space does not necessarily indicate their position with
respect to one another in the high dimensional space. In addition, t-SNE maps are arbitrary
in reflection, rotation, and scale; these are characteristics shared by most dimension-reduction
techniques. Therefore interpretation of these maps must take these aspects into account.

Aside from t-SNE’s predecessor, SNE, other algorithms exist that aim to produce
lower dimensional maps of the high dimensional data. Two classic techniques are principle
component analysis (PCA) and non-metric multidimensional scaling (NMDS). PCA works by
projecting the data into the desired dimension such that the resulting projection retains the
maximum amount of variability in the new orthogonal axis. For visualization, the desired
projection would include scores on the first two principle components. These PCs are the
eigenvectors associated with the two largest eigenvalues of the correlation or covariance
matrix of the Q variables. This will correspond to the projection that retains the maximum
variability (Zaki and Meria, 2014). Unlike t-SNE which aims to keep points in the high
dimensional space close in the low dimensional space, PCA aims at keeping points that are
far apart in the high dimensional space also far apart in the low dimensional projection (van
der Matten and Hinton, 2008). Figure 2a displays a t-SNE map of the MNIST data set with
the perplexity defined as 35. Figure 2b displays a map created using the first two principle
components of the MNIST data set. The map created using t-SNE correctly delineates some
groupings in the data, whereas the map created using PCA does not differentiate any clear
groups.

IV. Data Description

To further investigate the performance of t-SNE, four data sets were examined. The
first data set was simulated to contain no high dimensional structure, hereafter referred to as
“No Structure”. The second data set was simulated to have near-perfect high dimensional
structure, hereafter referred to as “Clear Structure”. The third data set was simulated to
have a moderate degree of high dimensional structure, hereafter referred to as “Moderate
Structure”. The last was a subsample of the classic MNIST data set (LeCun and Cortes,
1999) where 1,000 observations, were randomly sampled from the original 60,000 observations
hereafter referred to as “MNIST”. The simulated data sets are used to display how changes
in the perplexity parameter impact the resulting t-SNE map under controlled circumstances.
Alternatively, the MNIST data set was used to display how changes in perplexity impact
the resulting t-SNE map when the classes of the data are known, but not the exact high
dimensional structure.

To simulate the “No Structure” data set, N = 100 observations were randomly
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Figure 2: t-SNE (a) map based on a perplexity of 35 and a PCA (b) map using the first two
principle components. Both are for a sample of 1000 observations from the MNIST data set.
First two PCAs retain 17.63% of the variation in the original 784 variables.
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Figure 3: Modified Parallel Coordinates Plot of the No Structure data set displaying each
simulated observation across the 10 dimensions.

generated from a Q = 10 dimensional multivariate normal distribution where each yi ∼
MVN(~µ,Σ) with ~µ = ~5010x1 and Σ = 25I10x10. Figure 3, a modified parallel coordinates
plot (Schloerke et al; 2018), visualizes each of the 100 simulated observations, across the 10
dimensions on the original scale. It displays no inherent structure across the 10 dimensions.

The “Clear Structure” data set was simulated to have three distinct groups. The first
group was generated by sampling 10 observations from a 10 dimensional multivariate normal
distribution, such that each yi ∼MVN(~µ,Σ) with ~µ = ~2010x1 and Σ = 25I10x10. The second
group was generated by sampling 30 observations from a 10 dimensional multivariate normal
distribution, such that each yi ∼MVN(~µ,Σ) with ~µ = ~5010x1 and Σ = 25I10x10. The third
group was generated by sampling 60 observations from a 10 dimensional multivariate normal
distribution such that each yi ∼ MVN(~µ,Σ) with ~µ = ~8010x1 and Σ = 25I10x10. Figure
4, a modified parallel coordinates plot, visualizes the value for each of the 100 simulated
observations, across the 10 dimensions on the original scale. It displays the three distinct
groups.

The “Moderate Structure” data set was also simulated to have three groups, but with
less definite boundaries. The first group was generated by sampling 10 observations from a 10
dimensional multivariate normal distribution such that each yi ∼MVN(~µ,Σ) with ~µ = ~4110x1
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Figure 4: Modified Parallel Coordinates Plot of the Clear Structure data set displaying each
simulated observation across the 10 dimensions.
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Figure 5: Modified Parallel Coordinates Plot of the Moderate Structure data set displaying
each simulated observation across the 10 dimensions.

and Σ = A10x10, where A has 40s on the main diagonal and 5s on the off diagonals. The
second group was generated by sampling 30 observations from a 10 dimensional multivariate
normal distribution such that each yi ∼MVN(~µ,Σ) with ~µ = ~5010x1 and Σ = A10x10, where
A has 40s on the main diagonal and 5s on the off diagonals. The third group was generated
by sampling 30 observations from a 10 dimensional multivariate normal distribution such
that each yi ∼ MVN(~µ,Σ) with ~µ = ~5910x1 and Σ = A10x10, where A has 40s on the main
diagonal and 5s on the off diagonals. Figure 5, a modified parallel coordinates plot, visualizes
the value for each of the 100 simulated observations, across the 10 dimensions on the original
scale. It displays the three groups and indicates some group-level differences but also some
overlap across the groups.

The MNIST data set was downloaded from Kaggle.com and it contains 60000 ob-
servations and 785 variables. Each observation corresponds to one hand written image of a
number between 0 and 9. One of the variables in the data set is an identifier variable that
indicates the number that was hand drawn. Whereas the other 784 variables in the data set
each correspond to a single pixel in the images and contains the gray-scale value ranging
from 0 to 255. t-SNE has a computational complexity of O(n2) (van der Matten and Hinton,
2008). To make repeated analyses of this data set feasible, 1,000 of the images were randomly
sampled and used in this analysis.
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V. Methodology

t-SNE uses gradient descent to minimize the Kullback-Leibler divergence between the
joint probability distribution of the high dimensional similarities and the joint probability
distribution of the low dimensional similarities (van der Matten and Hinton, 2008). Therefore
it seemed reasonable to select the optimal perplexity based on optimizing the same objective
function, that is, minimizing the Kullback-Leibler divergence.

To test this idea, the t-SNE algorithm was applied using every potential value of
perplexity for each of the four data sets, twice. Two runs of the algorithm allows for the
assessment of variability due to the random initialization. For each application of t-SNE the
Kullback-Leibler divergence of the last iteration was extracted. Then, for each data set, a
plot was created that displayed the Kullback-Leibler divergence against perplexity. Based on
these plots, a t-SNE map was produced using the perplexity that lead to the t-SNE projection
with the smallest Kullback-Leibler divergence. The t-SNE map was compared to the “best”
t-SNE map that was found based on manual selection. That is, running through a suite
of values of perplexity manually, visually inspecting each associated plot, and selecting the
resulting map that appeared “best”.

The goal of t-SNE is to produce meaningful visualizations that retain the local
structure of the high dimensional data. “Meaningful” differs depending on the data set used.
For the “No Structure” simulated data set, there should be no t-SNE map that indicates
any groupings in the data. Whereas for the two structured data sets, the more defined the
groupings are in the map, the better. For the MNIST data set, there are 10 known groups.
The best map would display each known group as distinctly as possible.

This metric of visual comparison is clearly subject to bias. However when the goal is
to produce a meaningful visualization, the “eye test” may be what ultimately matters.

All t-SNE maps were estimated in R using the package Rtsne (Krijthe, 2015). Another
package in R that has the ability to run t-SNE is the package tsne (Donaldson, 2016). Along
with the t-SNE algorithm, the Rtsne package provides a few optional parameters: a setting
for whether or not to run PCA prior to t-SNE and a “speed up” parameter named theta. The
theta parameter input can range from 0 to 1 depending on the degree of speedup. It uses the
Barnes Hut method as an approximation (van der Matten, 2014), and the closer theta is to
one, the greater the approximation. A theta setting of 0 will lead to no approximation, and
thus the t-SNE algorithm in its original version. For the purpose of this paper, theta was set
at zero for all applications, although variation of results across combinations of perplexity
and theta could also be of interest.

VI. Results

Figures 6a through 6d display the Kullback-Leibler (KL) divergence across each value
of perplexity for the four data sets analyzed. All four plots indicate an interesting relationship
between perplexity and KL divergence, Figures 6b through 6d in particular. Initially, as
perplexity increases so does the KL divergence. However, quickly after this initial increase,
KL divergence decreases across the remaining values of perplexity. Figure 6a also displays
this pattern, however at a perplexity of 1, the KL divergence is lower than at any other value
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Figure 6: Scatterplots displaying the change in Kullback-Leibler divergence across perplexities
for each of the (a) No Structure, (b) Clear Structure, (c) Moderate Structure, and (d) MNIST
data sets.

of perplexity. For the other three data sets, the lowest KL divergence occurs at the maximum
value of perplexity considered. If minimization of the KL divergence is the goal, it would
appear that a perplexity value of 1 should be used for the “No Structure” simulated data set,
perplexity values of 33 for both the “Clear Structure” and “Moderate Structure” simulated
data sets, and a perplexity of 333 should be used for the reduced MNIST data set. Those
last three are the maximum values of perplexity allowed by the algorithm.

In addition to this noticeable trend in KL divergence across perplexity, it should be
noted that the KL divergence differs across different runs using the same perplexity. For
each data set, t-SNE was ran twice with different seeds for the random initialization for
each potential value of perplexity. Figures 6a through 6d also display variability in the KL
divergence at the same value of perplexity. That is, different runs using the same perplexity
will create different t-SNE visualizations.

Figures 7a and 7b display t-SNE visualizations for the “No Structure” simulated
data set. Figure 7a was created using the KL minimization suggested perplexity of one, and
Figure 7b was created using a manually selected perplexity of 15. With no prior experience
reading a t-SNE map, one may be inclined to pick out many small groups from Figure 7a.
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Figure 7: t-SNE maps based on perplexities of 1 (a) and 15 (b) for a sample of n=100
observations from the No Structure data set.

However, with a some experience it becomes clear that maps of this nature, that display
small string-like connections, indicate a perplexity value that is too small. Figure 7b, with a
perplexity of 15 displays a random cloud of points. In fact, there was no value of perplexity
that displayed any sort of grouping (besides the many small string-like groupings) in the
low dimensional projection. Thus in the case where there is absolutely no high dimensional
structure (at least with Q = 10 dimensions considered here), the choice of perplexity does
not seem to have a great impact on the resulting t-SNE visualization. It is possible that
the number of dimensions in the original data set could impact these results but that is not
explored here.

Figures 8a and 8b display t-SNE visualizations for the “Clear Structure” simulated
data set. Figure 8a was created using the KL minimization suggested perplexity of 33, and
Figure 8b was created using a manually selected perplexity of nine. Both visualizations display
three groups. However the groupings are more clear in the t-SNE map using a perplexity
of nine. Figure 8a displays very compact groups. Once again without much experience,
one may be inclined to misinterpret the plot by observing only one or two points in one
of the groups. However, all the associated points in that group are there, they just have
very similar projected values. An interesting point to note about Figures 8a and 8b are the
positioning of the groups in relation to one another. In Figure 8a, the large group (which
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Figure 8: t-SNE maps based on perplexities of 33 (a) and 9 (b) for a sample of n=100
observations from the Clear Structure data set.

was simulated to have a multivariate mean vector of all 80s) is located far away from the
other two groups. Whereas the two smaller groups (simulated to have multivariate mean
vectors of all 20s and 50s respectively) are relatively close to one another. The projection
is clearly not using the means to decide how the groups are positioned with respect to one
another, rather the number of observations together or not in a groups. Since perplexity is
related to the effective number of neighbors, it is evident with a perplexity of 33, the two
smaller groups, which have 10 and 30 points respectively, are pulled closer together, such
that each point is close to approximately 33 other points. Whereas in Figure 8b, when the
perplexity is set at nine, the groups can spread out as there is no need for the group of size
10 to be close to any other points to meet the perplexity definition. A manual exploration of
maps across the perplexities showed that all values of perplexity lead to three groups, besides
a perplexity of one. When a perplexity of one was used, the resulting t-SNE map showed the
many small-string like groupings that were discussed previously. Thus, it appears that in the
“Clear Structure” case, the choice of perplexity does not seem to have a qualitative impact on
the resulting t-SNE visualization if it is set to reasonable values.

Figures 9a and 9b display t-SNE visualizations for the “Moderate Structure” simulated
data set. Figure 9a was created using the KL minimization suggested perplexity of 33 and
Figure 9b was created using a manually selected perplexity of 10. In this case, both plots do
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Figure 9: t-SNE maps based on perplexities of 33 (a) and 10 (b) for a sample of n=100
observations from the Moderate Structure data set.

not clearly display three groups. Figure 9a displays two obvious groups, one small and one
large. Whereas in Figure 9b, three possibly distinct groups can be seen. In this case then,
the choice of perplexity matters. The goal of t-SNE is to project high dimensional points
into a low dimensional space while retaining the local structure. Therefore a perplexity of 33
results in a visualization that “fails”, as the three groups are not clearly identifiable. Whereas
in the visualization created using a perplexity of 10, the three groups are clearly identifiable.

Figures 10a and 10b display t-SNE visualizations for the reduced MNIST data set.
Figure 10a was created using the KL minimization suggested perplexity of 333, whereas
Figure 10b was created using a manually selected perplexity of 35. Figure 6a displays a
random cloud of points and there are no distinguishable groups. Whereas Figure 6b displays
some groupings. Without prior knowledge of the groupings, a person may pick out six or
seven groups. This is not the 10 classes that are present in these data, but is closer to showing
the known groups than Figure 6a that shows one large group.

Figures 11a and 11b also display t-SNE visualizations for the sample of the MNIST
data set discussed previously. However they are colored to indicate the grouping that each
observed point belongs to. Like Figures 10a and 10b, 11a and 11b were created using
perplexities of 333 and 35, respectively. It is important to first examine the non-colored
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Figure 10: t-SNE maps based on perplexities of 333 (a) and 35 (b) for a sample of n=1000
observations from the MNIST data set.

maps, as to not get mislead by addition of group information. In practice, t-SNE is often
used in situations where groups are not known and so coloring the points by known groups
is not possible. By adding color to distinguish groupings in Figures 11a and 11g, a general
understanding of the accuracy of t-SNE can be examined. Ignoring the fact that Figure 11a
is a random cloud of points, the colors indicate that t-SNE generally places points of the
same class close to one another. However there is not enough space between the groups to
distinguish them from one another without the aid of color. Figure 11b indicates that the
groups that were created by the t-SNE algorithm were fairly accurate. For the most part,
observations that are close to one another belong to the same class. This method is certainly
not perfect, as there are many points that appear to be in groups that actually belong to a
different class.

VII. Discussion

Simply selecting the perplexity parameter based on minimization of Kullback-Leibler
divergence does not lead to the best possible t-SNE visualization. In the “No Structure”
simulated data set, the resulting t-SNE map, which used the perplexity suggested by this
method, led to many small groupings that appear commonly for values of perplexity that
are too small. In the “Clear Structure” simulated data set, the resulting t-SNE map which
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Figure 11: t-SNE maps based on perplexities of 333 (a) and 35 (b) for a sample of n=1,000
observations from the MNIST data set. Color has been added to display known groups based
on the number that were written.
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used the perplexity suggested by this method produced a map that correctly identified three
groups. However, the proximity of these groups was not in accordance to the global structure
of the high dimensional data. In the “Moderate Structure” simulated data set, the resulting
t-SNE map which used the perplexity suggested by this method indicated only two groups
in these data. Whereas other values of perplexity were able to correctly separate all three
groups in the data. In the reduced MNIST data set, the results were similar. The resulting
t-SNE visualization using the suggested perplexity indicated one large group; using different
perplexities indicated at least some grouping in those data. Thus, selecting perplexity based
on minimization of Kullback-Leibler divergence does not appear to be an appropriate method.

Based on these varying results, the question arises: how is perplexity to be chosen?
It could be as simple and unsatisfying as a game of guess and check. The original authors
provide guidelines that suggest the optimal perplexity parameter will generally be between
5 and 50 (van der Matten and Hinton, 2008). Based on the efforts of this project, this
statement does appear generally correct. The method of guess and check falters in its ability
to produce results without human interaction. A manual inspection of each produced plot
and a judgement call are required for each trial. This is time consuming and likely to lead to
biased results. The question that arises by this predicament is how to algorithmically mimic
the manual inspection and make a selection based on a less biased criterion.

There is no perfect algorithm, and t-SNE is certainly no exception to the rule. That
being said, t-SNE does aim to answer the right questions. Or maybe better yet, produce
the right questions. The scientific method relied upon by the current technological world is
based on an observation that leads to questions. Traditionally this observation comes from
the natural world. However, as time progresses, I believe these observations will be made by
observing data. Tools such as t-SNE give a glimpse of the data, they provide insight into a
phenomena and spark reason to ask further questions.
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IX Appendix:
# Settings

knitr::opts_chunk$set(echo = FALSE)
knitr::opts_chunk$set(message = FALSE)
knitr::opts_chunk$set(warning = FALSE)
###### Setup

### Packages
library(tidyverse)
library(Rtsne)
library(gridExtra)
library(mnormt)
library(GGally)

### t-sne mnist

mnist <- read_csv("mnist_train.csv")

mnist_small <- mnist %>%
sample_n(1000, replace = FALSE)

set.seed(34536)

tsne_mnist_1 <- Rtsne(mnist_small[,2:785], pca = TRUE, perplexity = 5, theta = 0)

set.seed(34536)

tsne_mnist_2 <- Rtsne(mnist_small[,2:785], pca = TRUE, perplexity = 50, theta = 0)

tm1 <- ggplot(data = data.frame(tsne_mnist_1$Y)) +
geom_point(aes(x = tsne_mnist_1$Y[,1], y = tsne_mnist_1$Y[,2])) +
labs(title = "t-SNE: MNIST",

subtitle = "Perplexity: 5",
x = "X Coordinate",
y = "Y Coordinate",
caption = "a") +

theme_minimal() +
coord_fixed(ratio = 1)

tm2 <- ggplot(data = data.frame(tsne_mnist_2$Y)) +
geom_point(aes(x = tsne_mnist_2$Y[,1], y = tsne_mnist_2$Y[,2])) +
labs(title = "t-SNE: MNIST",
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subtitle = "Perplexity: 50",
x = "X Coordinate",
y = "Y Coordinate",
caption = "b") +

theme_minimal() +
coord_fixed(ratio = 1)

grid.arrange(tm1, tm2, nrow = 1)

set.seed(34536)

tsne_mnist_good <- Rtsne(mnist_small[,2:785], pca = TRUE, perplexity = 35, theta = 0)

tmgood <- ggplot(data = data.frame(tsne_mnist_good$Y)) +
geom_point(aes(x = tsne_mnist_good$Y[,1], y = tsne_mnist_good$Y[,2])) +
labs(title = "t-SNE: MNIST",

subtitle = "Perplexity: 35",
x = "X Coordinate",
y = "Y Coordinate",
caption = "a") +

theme_minimal() +
coord_fixed(ratio = 1) +
guides(color = FALSE)

pca1 <- princomp(mnist_small[,2:785])
pca2 <- pca1$scores %>%

matrix(nrow = 1000) %>%
data.frame() %>%
select(c(1, 2))

pcaplot <- ggplot(data = pca2) +
geom_point(aes(x = pca2$X1, y = pca2$X2)) +
labs(title = "PCA: MNIST",

subtitle = "First Two Principle Components",
x = "Principle Component 1",
y = "Principle Component 2",
caption = "b") +

theme_minimal()+
coord_fixed(ratio = 1) +
guides(color = FALSE)
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grid.arrange(tmgood, pcaplot, nrow = 1)

### Data Generate

# "No Structure"
set.seed(34536)

no_structure <- rmnorm(n = 10, mean = rep(50, 100), diag(25, 100), sqrt=NULL) %>%
t() %>%
data.frame()

# "Clear Structure"

set.seed(34536)

g1 <- rmnorm(n = 10, mean = rep(20, 10), diag(25, 10)) %>%
t() %>%
data.frame()

g2 <- rmnorm(n = 10, mean = rep(50, 30), diag(25, 30)) %>%
t() %>%
data.frame()

g3 <- rmnorm(n = 10, mean = rep(80, 60), diag(25, 60)) %>%
t() %>%
data.frame()

yes_structure <- rbind(g1, g2, g3) %>%
data.frame() %>%
mutate(Group = c(rep("1", 10), rep("2", 30), rep("3", 60)))

# Middle Structure

set.seed(343446)

g1 <- rmnorm(n = 10, mean = rep(41, 10), matrix(c(rep(5, 100)), nrow = 10) + diag(35, 10)) %>%
t() %>%
data.frame()

g2 <- rmnorm(n = 10, mean = rep(50, 30), matrix(c(rep(5, 900)), nrow = 30) + diag(35, 30)) %>%
t() %>%
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data.frame()

g3 <- rmnorm(n = 10, mean = rep(59, 60), matrix(c(rep(5, 3600)), nrow = 60) + diag(35, 60)) %>%
t() %>%
data.frame()

middle_structure <- rbind(g1, g2, g3) %>%
data.frame() %>%
mutate(Group = c(rep("1", 10), rep("2", 30), rep("3", 60)))

ggparcoord(no_structure,
columns = 1:10,
scale = "globalminmax") +

labs(x = "Dimension",
y = "Simulated Value",
title = "No Structure")+

theme_minimal()

ggparcoord(yes_structure,
columns = 1:10,
groupColumn = 11,
scale = "globalminmax") +

labs(x = "Dimension",
y = "Simulated Value",
title = "Clear Structure") +

theme_minimal()

ggparcoord(middle_structure,
columns = 1:10,
groupColumn = 11,
scale = "globalminmax") +

labs(x = "Dimension",
y = "Simulated Value",
title = "Moderate Structure")+

theme_minimal()

KL_perp <- function(data, rep_perplexity, max_perplexity) {

KL <- matrix(c(rep(0, max_perplexity * rep_perplexity)), nrow = max_perplexity)

for(i in 1:max_perplexity) {
for(j in 1:rep_perplexity){

tsne_train <- Rtsne(data, pca = TRUE, perplexity = i, theta = 0.0)
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KL[i, j] <- tsne_train$itercosts[20]
}

}

KL_gather <- KL %>%
t() %>%
data.frame() %>%
gather(key = "Perplexity", value = "KL", 1:max_perplexity) %>%
mutate(Perplexity = as.numeric(substring(Perplexity, 2)))

return(KL_gather)
}

### "No Structure"

set.seed(34536)

KL_gather_nostr <- KL_perp(no_structure, 2, 33)

g_nostr <- ggplot(data = KL_gather_nostr) +
geom_point(aes(x = Perplexity, y = KL)) +
theme(axis.text.x = element_text(angle = 90, hjust = 1)) +

labs(title = "KL Divergence Across Perplexities",
subtitle = "Simulated No Structure Data",
caption = "a") +

theme_minimal()

### yes structure

set.seed(34536)

KL_gather_yesstr <- KL_perp(yes_structure, 2, 33)

g_yesstr <- ggplot(data = KL_gather_yesstr) +
geom_point(aes(x = Perplexity, y = KL)) +
theme(axis.text.x = element_text(angle = 90, hjust = 1)) +

labs(title = "KL Divergence Across Perplexities",
subtitle = "Simulated Clear Structure Data",
caption = "b") +

theme_minimal()

### middle structure
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set.seed(34536)

KL_gather_midstr <- KL_perp(middle_structure, 2, 33)

g_midstr <- ggplot(data = KL_gather_midstr) +
geom_point(aes(x = Perplexity, y = KL)) +
theme(axis.text.x = element_text(angle = 90, hjust = 1)) +

labs(title = "KL Divergence Across Perplexities",
subtitle = "Simulated Moderate Structure Data",
caption = "c")+

theme_minimal()

### MNIST

set.seed(34536)

#KL_MNIST <- KL_perp(mnist_small[, 2:785], 3, 333)

KL_MNIST <- read_csv("MNIST_perplexity.csv")

KL_MNIST <- KL_MNIST[,2:3]

g_mnist <- ggplot(data = KL_MNIST) +
geom_point(aes(x = Perplexity, y = KL)) +
theme(axis.text.x = element_text(angle = 90, hjust = 1)) +

labs(title = "KL Divergence Across Perplexities",
subtitle = "MNIST Data",
caption = "d")+

theme_minimal()

### plots
grid.arrange(g_nostr, g_yesstr, g_midstr, g_mnist, nrow = 2)

# No str

set.seed(34536)

tsne_no_str_1 <- Rtsne(no_structure, pca = TRUE, perplexity = 1, theta = 0)

g_nostr1 <- ggplot(data = data.frame(tsne_no_str_1$Y)) +
geom_point(aes(x = tsne_no_str_1$Y[,1], y = tsne_no_str_1$Y[,2])) +
labs(title = "No Structure t-SNE",

subtitle = "Perplexity: 1",
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caption = "a",
x = "",
y = "") +

theme_minimal()

set.seed(34536)

tsne_no_str_15 <- Rtsne(no_structure, pca = TRUE, perplexity = 15, theta = 0)

g_nostr15 <- ggplot(data = data.frame(tsne_no_str_15$Y)) +
geom_point(aes(x = tsne_no_str_15$Y[,1], y = tsne_no_str_15$Y[,2])) +
labs(title = "No Structure t-SNE",

subtitle = "Perplexity: 15",
caption = "b",
x = "",
y = "") +

theme_minimal() +
coord_fixed(ratio = 1)

grid.arrange(g_nostr1, g_nostr15, nrow = 1)

# yes str

set.seed(34536)

tsne_yes_str33 <- Rtsne(yes_structure, pca = TRUE, perplexity = 33, theta = 0)

g_yesstr33 <- ggplot(data = data.frame(tsne_yes_str33$Y)) +
geom_point(aes(x = tsne_yes_str33$Y[,1], y = tsne_yes_str33$Y[,2])) +
labs(title = "Clear Structure t-SNE",

subtitle = "Perplexity: 33",
caption = "a",
color = "Multivariate Mean",
x = "",
y = "") +

theme_minimal() +
coord_fixed(ratio = 1)

set.seed(34536)

tsne_yes_str10 <- Rtsne(yes_structure, pca = TRUE, perplexity = 9, theta = 0)

g_yesstr9 <- ggplot(data = data.frame(tsne_yes_str10$Y)) +
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geom_point(aes(x = tsne_yes_str10$Y[,1], y = tsne_yes_str10$Y[,2])) +
labs(title = "Clear Structure t-SNE",

subtitle = "Perplexity: 9",
caption = "b",
color = "Multivariate Mean",
x = "",
y = "") +

theme_minimal() +
coord_fixed(ratio = 1)

grid.arrange(g_yesstr33, g_yesstr9, nrow = 1)

# mid str

set.seed(34536)

tsne_mid_str33 <- Rtsne(middle_structure, pca = TRUE, perplexity = 33, theta = 0)

g_midstr33 <- ggplot(data = data.frame(tsne_mid_str33$Y)) +
geom_point(aes(x = tsne_mid_str33$Y[,1], y = tsne_mid_str33$Y[,2])) +
labs(title = "Moderate Structure t-SNE",

subtitle = "Perplexity: 33",
caption = "a",
color = "Multivariate Mean",
x = "",
y = "") +

theme_minimal() +
coord_fixed(ratio = 1)

set.seed(34536)

tsne_mid_str10 <- Rtsne(middle_structure, pca = TRUE, perplexity = 10, theta = 0)

g_midstr10 <- ggplot(data = data.frame(tsne_mid_str10$Y)) +
geom_point(aes(x = tsne_mid_str10$Y[,1], y = tsne_mid_str10$Y[,2])) +
labs(title = "Moderate Structure t-SNE",

subtitle = "Perplexity: 10",
caption = "b",
color = "Multivariate Mean",
x = "",
y = "") +

theme_minimal() +
coord_fixed(ratio = 1)
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grid.arrange(g_midstr33, g_midstr10, nrow = 1)

# mnist

set.seed(34536)

tsne_mnist_333 <- Rtsne(mnist_small[,2:785], pca = TRUE, perplexity = 333, theta = 0)

g_mnist333 <- ggplot(data = data.frame(tsne_mnist_333$Y)) +
geom_point(aes(x = tsne_mnist_333$Y[,1], y = tsne_mnist_333$Y[,2])) +
labs(title = "MNIST t-SNE",

subtitle = "Perplexity: 333",
caption = "a",
color = "Multivariate Mean",
x = "",
y = "") +

theme_minimal() +
coord_fixed(ratio = 1)

set.seed(34536)

tsne_mnist_40 <- Rtsne(mnist_small[,2:785], pca = TRUE, perplexity = 35, theta = 0)

g_mnist40 <- ggplot(data = data.frame(tsne_mnist_40$Y)) +
geom_point(aes(x = tsne_mnist_40$Y[,1], y = tsne_mnist_40$Y[,2])) +
labs(title = "MNIST t-SNE",

subtitle = "Perplexity: 35",
caption = "b",
color = "Multivariate Mean",
x = "",
y = "") +

theme_minimal() +
coord_fixed(ratio = 1)

grid.arrange(g_mnist333, g_mnist40, nrow = 1)

g_mnist333_col <- ggplot(data = data.frame(tsne_mnist_333$Y)) +
geom_point(aes(x = tsne_mnist_333$Y[,1], y = tsne_mnist_333$Y[,2], color = as.factor(mnist_small$label))) +
labs(title = "MNIST t-SNE",

subtitle = "Perplexity: 333",
caption = "Figure a",
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color = "Number",
x = "",
y = "") +

theme(legend.position="none") +
theme_minimal() +
coord_fixed(ratio = 1) +
guides(color = FALSE)

g_mnist40_col <- ggplot(data = data.frame(tsne_mnist_40$Y)) +
geom_point(aes(x = tsne_mnist_40$Y[,1], y = tsne_mnist_40$Y[,2], color = as.factor(mnist_small$label))) +
labs(title = "MNIST t-SNE",

subtitle = "Perplexity: 35",
caption = "Figure b",
color = "Multivariate Mean",
x = "",
y = "") +

theme(legend.position="none") +
theme_minimal() +
coord_fixed(ratio = 1) +
guides(color = FALSE)

grid.arrange(g_mnist333_col, g_mnist40_col, nrow = 1)
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