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ABSTRACT

An overview of the basic theory behind the EM algorithm
(Dempster, et. al., 1977) is presented. It is shown how this
theory simplifies when the incomplete data arises from a regular
exponential density. The application of the algorithm to such a

case is discussed, and a numerical example is provided.



I. INTRODUCTION

Dealing with missing observations in a data set is a problem
that all too frequently arises in statistical analysis.
Oversights, carelessness, and accidents plague even the most
well-planned experimental and observational studies, leading to
results which are often incomplete and fragmented. Such results
can present a real dilemma to a statistician, who cannot rely on
conventional techniques to draw inferences and must search out
alternative strategies.

Not surprisingly, many different procedures have been
proposed for handling missing data. Some are ad hoc methods
developed by practitioners more concerned with application than
with theoretical justification. Still others are procedures
which are oriented toward specific problems and cannot be easily
extended to a general setting. The EM (Expectation Maximization)
algorithm, an iterative method for finding maximum-likelihood
estimates from an incomplete data set, falls into neither of
these categories. It has the advantages of being both broadly
applicable and theoretically sound. For both of these reasons,
it has become a very popular tool in the ten years since its
formal introduction by Dempster, Laird, and Rubin (1977).

This paper provides a brief overview and a simple
illustration of the EM algorithm. The first section discusses

the motivation behind the algorithm by giving a Dbasic
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presentation of the theory upon which the method is based. It
also shows how this theory simplifies when the data arises from a
density in the regular exponential family. The second section
considers the application of the algorithm to such a case.
Specifically, it shows how the method can be used to find
maximum-likelihood estimates from a bivariate normal sample with

missing observations. A numerical example is provided.

II. THEORY OF THE EM ALGORITHM

A. Overview of Missing Data Techniques

Many methods have been proposed in recent years for dealing
with incomplete data sets. Most of these methods fall into one
or more of the following categories (Wright, 1982):

1. Procedures based on complete data sets. These procedures

basically advocate eliminating the incomplete units from a data
set and proceeding with an analysis of the complete units. The
most obvious objections to such an approach are that information
is discarded and that serious biases can invalidate the results.

2. Imputation-based procedures. These methods involve making
"reasonable" substitutions for missing values and proceeding with
a conventional analysis for a complete data set.

3. Weighting procedures. These procedures are commonly used
in the analysis of sample survey data to account for nonresponse.
Such methods weight the results so that the data from respondents

who have characteristics representative of the nonrespondents are
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given additional consideration in the analysis.

4. Model-based procedures. In these methods, a model is

defined which accounts for both the observed and the missing
data, and inferences are based on the likelihood under that
model. The advantage of this type of approach is that the
assumptions made in constructing the model can be used to justify
and evaluate the resulting method.

The EM algorithm is a model-based procedure. A brief overview
of the theory which 1leads to the steps in the method will

illustrate why it falls into that classification.

B. Motivation for the EM Algorithm

Let Y represent a set of complete data and let f(Y|®)
represent its density. Write Y as (X,Z), where X represents the
observed part of Y and Z represents the missing part of Y. We
will then have

£(vle) = £((x,2)|e) = £(x,0) £(z|x,8) (1)
where f£(X|®) is the density of X and f£(Z|X,@) is the density of Z
given X.

Now consider the loglikelihood of © given Y: 1(©|Y). Using

(1) we can write the following:
1(elyY) = 1(8|X) + 1n(f(z]|X,0))
1(8[X) = 1(e]Y) - In(f(z]|X,90)) (2).

Our goal is to find an estimate of © which will maximize

1(e|X), the loglikelihood of © given the observed data X. To see

how this is accomplished via the EM algorithm, first consider
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taking expectations of both sides of (2) with respect to the
conditional distribution of Z given both X and a current estimate

of ©, say ©¢. Assuming continuous densities, we can write

J 1(e]|x) £(z|x,64) dz =

J 1(ely) f£(z|X,e) dz - J In(f(z]X,6¢)) £(Z|X,0¢) dz2 (3).
Note, however, that

[ 1(e|x) £(z|X,04) dz

J

= 1(9]X) [ f(z|X,0¢) 4z

= 1(e]Xx) J (£(2,X,0¢) / £(X,0¢)) Az

= 1(ex) (( j £(Z,X,0¢) Az ) / £(X,0¢) )

= 1(e|x).

Hence, if we make the definitions

Q(eleg,X) J 1(elY) £(z|X,6¢) dz

H(8|6g,X) = { In(£(z|X,0)) £(2|X,0) dz

we can write (3) as follows:
1(e]|X) = Q(ele¢,X) - H(e|et,X) (4).
Now there are two distinct steps in the EM algorithm: the E-
step (expectation step) and the M-step (maximization step). The

E-step essentially amounts to finding
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Q(ele,x) = J 1(e]yY) f(z|x,0¢) dz  (5).

Then the M-step finds a new estimate of ©, 64,3, which
maximizes Q(©|6¢,X) with respect to ©. For this 04,q, we will
have

Q(er+1lee,X) 2 Q(orleg,x)  (6)
with equality if and only if €449 = 6.

Now our goal is to maximize 1(©|X), the loglikelihood of ©
given the observed data X. Hence, we should show that the
quantity

1(8g+11X) - 1(8¢]X)
is positive (provided that € is unequal to ©¢47). Otherwise, we
will not have increased the likelihood in moving from our old
estimate €+ to our new estimate ©t;;7. Referring to (4), we can
write
1(0¢411X) - 1(8¢]X) =
[Q(Ot+110¢,X) = H(Bt41]0¢,X)]
- [Q(et]et,X) - H(O¢|0t,X)]
or equivalently
1(0t+1]X) - 1(8¢]x) =
[Q(Ot+110¢,X) - Q(O¢l6t,X)]
- [H(®t41]0¢,X) - H(O|0r,X)] (7).
Now by Jensen's Inequality, H(6t|®¢,X) 2 H(0|6¢,X) for all e.
This, of course, implies that H(®t|©¢,X) 2 H(Ot41]0¢,X). Also by
(6), we have Q(O44+7/0t,X) = Q(6¢|64,X) with equality if and only

if & = @f41. Therefore, we can assert that the difference in (7)
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is positive provided that 64,7 is unequal to 6+: i.e., that
1(0g4+11X) - 1(8¢]X) > 0 or
1(6¢411%) > 1(8¢]X)
unless @ = O¢41q.
Now the EM algorithm consists of consecutively iterating
between:

(a) the E-step: obtaining
Q(eleg,x) = j 1(ely) £(z|x,6¢) az.

(b) the M-step: finding ©¢4; by solving for that value of ©
which maximizes Q(©|6¢,X).
The steps are repeated for t = 1, 2, 3, ...., producing a
sequence of estimates ©,, 65, €3, .... . Under quite general
conditions, it can be shown that this sequence converges to some
number ©4x (Dempster, et. al., 1977; Wu, 1981). Now by what we
have previously argued, we can conclude that the 1likelihood of
each estimate ©t;q7 1s greater than the 1likelihood of its
predecessor O unless O¢;7 = 6 = 64. Hence, until a sequence of
estimates produced by the algorithm converges to ©i, each new
estimate we obtain for © will increase the likelihood over the
previous estimate. Furthermore, it can be shown that in most
cases, ©4 will be the global maximum of the loglikelihood 1(e]X)
(Wu, 1981).
This brief overview of the theory behind the EM algorithm
shows why it is a model-based procedure. The algorithm is based

on the decomposition of the loglikelihood (2), which is dependent
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upon the factorization of the density of the complete data Y into
the density of the observed data X and the density of the missing
data Z given X (1). It is not necessary, however, to understand
the theoretical details behind the algorithm in order to apply
it: one need only understand how to setup the E- and the M-step
for the application at hand. The computational complexity of
these steps can vary depending on the density of the complete
data Y; however, the steps are relatively easy to perform when
the data arises from a density in the regular exponential family.

We will now examine how the EM algorithm reduces in this

special case.

C. Theory for Densities from the Reqular Exponential Family
Suppose that f(Y|e) is from the regular exponential family;

i.e., that f(Y|®) is of the form

£(v|e) = (b(¥)/a(e)) exp(e' s(¥))
where © denotes a r x 1 vector of parameters, s(Y) denotes a r x
1 vector of complete-data sufficient statistics, and b(Y) and
a(®) represent scalar functions of Y and ©, respectively. (Note

that we must have
a(e) = J b(Y) exp(®' s(Y))

for a proper density.)
Consider the form of the loglikelihood of © given Y. We have
1(el¥) = -1In(a(®)) + 1n(b(Y)) + 0's(Y).

If we take the partial derivative of this expression with respect
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to ©, we obtain
(21(e]Y)/20) = (-1/a(8)) (2a(8)/38) + s(Y) (8).
Now suppose that ©+ represents a current estimate of ©. Let
us consider the M-step for our example. In this step, we find a
new estimate of ©, ©¢;7, which maximizes Q(el@t,X) with respect

to ©. Now we have
Q(eleg,X) = j 1(elY) f£(z|X,0¢) 4z

To find that value of © which will maximize Q(@I@t), we will take
the partial derivative of the preceding expression with respect

to @ and set the result equal to zero. Using (8), we can write

(2Q(8]et,X)/20) J (@l(e|Y)/ze) £(z|X,0) Az

J{ {(-1/a(8)) (2a(®)/28) + s(Y)} £(Z|X,0) dz

{(-1/a(®)) (2a(e)/20e)) J[ £(Z|X,0) dz
+ [ s(Y) £(Z|X,6y) Az

= {(-1/a(®)) (@a(e)/z0)}) + E[ s(¥Y) | X, oy 1,
Hence, the solution to
((-1/a(e)) (ca(®)/z0)) = E[ s(Y) | X, 6¢ 1  (9)
will be that value of @ which will maximize Q(©|@¢,X).
Now it is relatively easy to show that
{(-1/a(e)) (2a(®)/20)) = E[ s(Y) | ® 1  (10)
by taking the partial derivative with respect to © of both sides

of
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J[ f(y|le) ay = 1.

So by equating (9) and (10), we have
E[ s(¥) | @] =E[ s(Y) | X, 8¢ 1  (11).
Now if it is possible to solve for © in this expression, the
solution we obtain will contain estimates for the parameters in ©
in terms of . Generally, however, (11) will not have a closed-
form solution, so we iterate between the following two steps to
arrive at our estimates:
(a) the E-step: estimate the sufficient statistics in s(Y)'
by finding
s(Y)g = E[ s(Y) | X, e¢ ].
(b) the M-step: determine €447 as the solution to
E[ s(Y) | ® 1 = s(¥)¢.
Clearly, when 8t = B¢41 = O6x at convergence, ©; will be the
solution to (11).
Note that in general the E-step requires solving for
E[ 1(e|Y) | X, © ]. 1In this special case, however, it is only
necessary to solve for E[ s(Y) | X, ©+ ] because this is all that
is needed to complete the M-step.
We will now consider an example where this special version of

the EM algorithm is used to find the maximum-~likelihood estimates

for an incomplete data set.
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III. AN EXAMPLE ILLUSTRATING THE EM ALGORITHM

A. Outline of the Method for Incomplete Bivariate Normal Data

Suppose that f(y;,ys) represents a bivariate normal density,
where yj; is N[ug,077] and y,; is N[@5,055]. It can be easily
shown that

N[p1 + (012/022) (Ya=k2), (011-012%/023)].
Similarly, it can be shown that the distribution of Yz]Yl is
N{uz + (012/011) (Y1-K1), (022-012%/011) 1.

Now suppose that we attempt to take n measurements on y; and
Yo to obtain two n x 1 vectors of observations: Y1 and Y2.
Assume, however, that our results turn out to be incomplete: nil
pairs have y; observed but y, missing, n2 pairs have both y; and
Yo observed, and the remaining n3 pairs have y; missing but y,
observed. Also, assume that the missing observations are
"missing at random" (MAR); i.e., when the data was collected, the

probability of obtaining an incomplete pair was the same for each

pair.

Partition Y1' = (Y11, Y12+ «--« Y1,n) as Y1' = (X1',z1'),
where X1' = (X33, X312, ---., X1, nl+n2) Trepresents the nl+n2
observed values in Y1 and 21' = (23 ni+n2+1s =-+--s Z1,n)
represents the n3 missing values in Y1. Partition Y2' = (ysq,
Y22+ +-e+y Y2,n) @s ¥Y2' = (Z2', X2') where 22' = (231, 222/ «+-+;

N . v -
Zp ,n1) represents the nl missing values in Y2 and X2 (X2, n1+1-
ooy len) represents the n2+n3 observed values in Y2, (See

Figure 1.)
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Y1 Y2
1 0
1 0
. zZ2

X1 ni
1 1
1 1

X2 n2
0 1
0 1
Z1 . .

n3
0 => missing 1=> observed

Figure 1. Illustration of complete-data.

We wish to calculate the maximum-likelihood estimates of !
= (M1, M2, 011, 022, O12) using the EM algorithm. The sufficient
statistics for estimating these parameters are s(Y)' = (s, Sj,
S11s S22, Sj2) Where

S1 = 2 Yii. S2 = 2 Y2i s11 = T y132
s22 = % y21%" s12 = ¥ V1ivai-

The E-step for this example will consist of estimating the
sufficient statistics by considering the expectation of each
statistic given the current parameter estimates, say 0y = (K1, ¢,
K2,tr O11,tr 922,ts 012,t)r and the observed data X1 and X2. For

example, our estimate for s; on the t'™ iteration will be
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s1,t = E[ s1 | X1, X2, ey]

E[ = yi;5 | X1, X2, 6]

E[ (2 %15 + % 215) | X1, X2, 6]
=% x5 + E [ T z15 | X1, X2, 6]
=2 X34 + B [p, ¢+ (012,¢/022,¢) (X29-H2,¢) ]
The estimates for s;, sj1, S35, and s3; can be found in a like

fashion. We will have:
S2,t = Z [M2,t + (012,t/011,¢) (X1i—k1,t)] + = Xp9
s11,t = £ %132 +
S ([k1,t + (012,t/922,¢) (X29-H2,£) ] +
(011, = (012,£)2/022,¢)}
S22,t = 2 {[K2,t * (012,t/011,¢) (X1i-M1,£)] +
(022,¢ = (912,£)2/011,¢)}
+ = ijz
S12,t = 2 X1i [K1,t + (012,t/022,¢) (Xoi-H2,£)] +
= xlszj +
Z Xpx [M2,t * (012,¢/011,¢) (X1k-H1,¢)]
Once s(Y)'t = (s1,t: S2,tr S11,ts S22,tr Si2,t) 1s obtained, the
M-step consists of finding ©¢41 = (M1, t+1, M2, t+1: 011,t+1/
022,t+1s O12,t+1) by using the usual moment-based formulas:
B1,t+1 = S1,t / 1,
H2,t+1 = S2,t / 1,
011,t+1 = (Sa2,t / M) = (B1,t+1)2
O22,t+1 = (S11,t / M) = (K2, t+1)2
012,t+1 = (S12,t / 1) — (K1,t+1) (M2, t+1) -

The EM algorithm for this problem consists of performing the
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E- and M-steps iteratively until the parameter estimates
converge.
The following numerical example applies the algorithm to an

incomplete bivariate normal data set.

B. Numerical Example
The program EMBVN.FOR (Appendix A) executes the steps in the

EM algorithm to find maximum-~likelihood estimates from an
incomplete bivariate normal data set. At the end of each
iteration, it outputs the current estimates for pq (under M1), pup
(under M2), o037 (under VAR1l), 035 (under VAR2), and o099 (under
cov). The program assumes that the incomplete data is input in
the format illustrated by Figure 1.

Appendix B presents a data set consisting of the birth
weights (Y1) and weaning weights (Y2) of 265 calves. The
majority of this data set is complete; however, 23 pairs of
observations are missing the weaning weight and 7 pairs of
observations are missing the birth weight. It is assumed that
the missing data is MAR, and that the complete data Y' = (Y1',
Y¥2') comes from a bivariate normal density.

Table 1 shows the output produced when EMBVN.FOR was run using
the data in appendix B. The initial estimates for the parameters
are computed in the program by simply ignoring the incomplete
information. (For instance, the initial estimate of puq is
computed by averaging the nl + n2 observations in X1, the initial

estimate for o7, is computed by finding the covariance of the
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middle n2 observations, etc.). It is interesting to note that in
this example, the differences between the initial and the final
estimates are relatively small. Thjs can be attributed to the
fact that there are a large number of complete pairs and
relatively few incomplete pairs in the data set.

The figures marked with an asterisk in appendix B represent
the predicted values for the missing observations. These
predicted values are based on the final parameter estimates shown

in Table 1.

Table 1. Output from EMBVN.FOR.

M1 M2 VAR1 VAR2 cov
85.29 473.81 124.41 4586.03 380.39
85.56 473.52 124.71 4621.63 396.78
85.60 473.48 124.88 4626.18 400.04
85.60 473.47 124.93 4626.92 400.63
85.60 473.47 124.93 4627.03 400.70

IV. CONCLUSION

The EM algorithm is an appealing tool for dealing with
missing data because it is based on simple and general theory,
and because it can be applied in a wide range of different
settings. In recent years, the algorithm has been used to deal
with many types of incomplete data problems (censored, truncated,
grouped data; incomplete multinomial data; incomplete multinormal

data; unbalanced ANOVA; etc.). Some of these applications were
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suggested by Dempster, Rubin, and Laird (1977) based on what had
already appeared in the 1literature. However, many other
applications have arisen through innovative adaptations of the
theory behind the algorithm. For instance, the EM algorithm has
often been used 1in situations not typically considered to be
incomplete data problems, such as hyperparameter estimation and
factor analysis.

The original paper by Dempster, Rubin, and Laird (1977)
provides a comprehensive overview of the theory and application
of the EM algorithm. Rubin and Little (1987) provide an
excellent overview of the algorithm at a less mathematical level.
For an extension of the algorithm from the bivariate to the
multivariate normal setting, Seber (1984) provides a brief yet

complete presentation.
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APPENDIX A.

Program EMBVN.FOR

Program EMBVN

INTEGER I, K, F, L, N1, N2, N3, N, FINAL
S1, s2, S11, S22, S12, M1, M2, VAR1l, VAR2,

REAL
REAL
REAL

BPY1, BPY2,
SUM

EPS, LASTM1, LASTM2, Y1(100},

Open the input & output files; read the data
OPEN(11,FILE='BINORM.DAT',6STATUS='0QLD!')
OPEN(12,FILE='RESULTS.DAT',6STATUS='NEW')
READ(11,%*) N1, N2, N3
N1 + N2 + N3
DO 10 I = 1, N
READ(11,*) Y1(I),
CONTINUE

N =

Y2 (I)

Find initial estimates for M1 and VAR1

SUM
L. =

0

N1 + N2
DO 20 I =1, L
SUM = SUM + Y1(I)

CONTINUE
M1 = SUM/ (N1+N2)
SUM = 0

DO 30 I =1, L
SUM = SUM + (Y1(I)=-M1)**2
CONTINUE

VAR1

SUM/ (N1+N2)

Find initial estimates for M2 and VAR2
SUM = 0
(N1+1)

F =
L =

N

DO 40 I = F, L
SUM

CONTINUE

SUM/ (N2+N3)

SUM = 0

DO 50 I=F, L
SUM = SUM + (Y2(I)-M2)#**2

CONTINUE

M2 =

VAR2

SUM + Y2(I)

SUM/ (N2+N3)

cov
¥2(100)
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Find an initial estimate for CoOV

SUM = 0
F=N1+1
L = N1 + N2

DO 55 I =F, L
SUM = SUM + (Y1(I)-M1)*(Y2(I)-M2)

CONTINUE

COV = SUM/ (N2)

~~~~~~ ]

WRITE(12,*)'
&

WRITE(12,%*) ! M1 M2 VAR1 VAR2
& cov!

WRITE (12,%) '======
& ey

Initialize variables
S1 =20

S2 =0

511
522
S12
EPS
FINAIL
LASTM1
LASTM2

o
[eBoNe

.0005
50
M1 + 1.0
M2 + 1.0

DO 100 K = 1, FINAL

Check for convergence of M1, M2 estimates
IF (ABS(LASTM1-M1) .GT. EPS) THEN
IF (ABS(LASTM2-M2) .GT. EPS) THEN

LASTM1 = M1

LASTM2 = M2

Output the current parameter estimates
WRITE(12,60) M1, M2, VAR1l, VAR2, COV

FORMAT (1X,F8.2,2X,F8.2,2X,F8.2,2X,F8.2,2X,F8.2)
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Compute the estimates for the sufficient statistics

Go through the first nl pairs (yl observed, y2 missing)
L = N1
DO 70 I =1, L

BPY2 = (M2 + (COV/VARL1)*(Y1(I)-M1))

S1 = S1 + Y1(I)

S2 = S2 + BPY2
S11 = S11 + Y1 (I)=**2
S22 = S22 + BPY2**2 + (VAR1l - (COV*%*2)/VAR2)
S12 = S12 + Y1(I)*BPY2
Y2 (I) = BPY2
CONTINUE
Go through the next n2 pairs (yl and y2 observed)
F=N1+1
L = N1 + N2
DO 80 I = F, L
S1 = S1 + Y1(I)
82 = 82 + Y2(I)
S11 = S11 + Y1(I)**2
522 = 822 + Y2(I)*%2
S12 = 812 + Y1(I)*Y2(I)
CONTINUE

Go through the last n3 pairs (yl missing, y2 observed)
N1 + N2 + 1

N

090 I=F, L

F
L
D

BPY1 = (M1 + (COV/VAR2)*(Y2(I)-M2))
S1 = S1 + BPY1
S2 = S2 + Y2(I)

S11 = S11 + BPY1**2 + (VAR2 - (COV#%*2)/VAR1)
S22 = 822 + Y2 (I)*#*2
S12 = S12 + BPY1*Y2(I)
Y1(I) = BPY1

CONTINUE

Compute new parameter estimates

M1 = S1/N
M2 = S2/N
VARL = S11/N - M1%%2

VAR2 = S822/N - M2%%2
cov = S812/N - M1*M2
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C Reinitialize the values
S1 =0
S2 = 0
S11 = 0
s22 =0
S12 = O
END IF
END IF

. 100 CONTINUE

C Output the observed and predicted values

WRITE (12, %) °

& =====!
WRITE (12,%) ' !
WRITE (12, %) ' =m——mmmmmmmmmmm e e e .
WRITE (12,%*) ! Y1 yo2!
WRITE (12, %) '=mmmmmmmm—mmm e o \
L =N
DO 110 I = 1, L
WRITE (12,120) Y1(I), Y2(I)
1i0 CONTINUE
120 FORMAT (1X, F10.2, 3X, F10.2)
WRITE (12, %) 'mmm e e mm e e :

END
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APPENDIX B.

An incomplete bivariate normal data set

Y1 = birth weight of calf

Y2 = weaning weight of calf

* = denotes the predicted value for a missing
observation (based on the mean of the
conditional distribution of y;lys or voly;,
whichever is appropriate)

Y1l Y2 Y1 Y2
71.00 426.64%* 79.00 472.00
93.00 497.20% 65.00 371.00
76.00 442.68% 92.00 554.00
52.00 365.30% 80.00 502.00

106.00 538.90%* 78.00 432.00
87.00 477 .96% 92.00 460.00
87.00 477 .96%* 90.00 450.00
61.00 447.00 77.00 420.00
82.00 500.00 91.00 443.00
87.00 542.00 88.00 471.00
68.00 405.00 92.00 479.00
84.00 534.00 93.00 444.00
89.00 506.00 74.00 475.00
77.00 465.00 83.00 451.00
71.00 470.00 92.00 529.00
78.00 483.00 96.00 538.00
68.00 472.00 78.00 423.00
63.00 535.00 87.00 425.00
95.00 618.00 87.00 473.00
63.00 360.00 78.00 416.00
96.00 453.00 93.00 538.00
67.00 488.00 87.00 456.00
92.00 523.00 74.00 411.00
94.00 573.00 87.00 500.00
86.00 500.00 82.00 446.00
67.00 481.00 80.00 455.00
75.00 464.00 70.00 365.00
71.00 449,00 76.00 406.00
82.00 488.00 92.00 549.00
94.00 503.00 84.00 479.00
82.00 525.00 75.00 446.00

102.00 620.00 81.00 516.00
75.00 524.00 61.00 325.00
90.00 529.00 83.00 438.00

86.00 579.00 100.00 553.00
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Y1 Y2 Y1 Y2
86.00 470.00 75.00 444.00
68.00 439.00 70.00 341.00
97.00 566.00 84.00 442.00
88.00 558.00 93.00 528.00
84.00 516.00 98.00 500.00
81.00 353.00 97.00 530.00
70.00 448.00 82.00 509.00
68.00 459.00 96.00 518.00
92.00 578.00 107.00 430.00
82.00 549.00 89.00 501.00
75.00 478.00 94.00 520.00
87.00 485.00 96.00 538.00
67.00 343.00 76.00 531.00
89.00 586.00 96.00 479.00
68.00 478.00 53.00 327.00
83.00 462.00 63.00 360.00
83.00 502.00 87.00 507.00
92.00 523.00 108.00 521.00
82.00 499.00 92.00 471.00
87.00 399.00 92.00 491.00
76.00 442.00 72.00 321.00
89.00 380.00 84.00 521.00
89.00 555.00 78.00 400.00
78.00 518.00 59.00 346.00
80.00 595.00 83.00 404.00
89.00 483.00 85.00 378.00
88.00 542.00 88.00 417.00
86.00 505.00 89.00 397.00
75.00 . 336.00 83.00 480.00
71.00 456.00 98.00 570.00
78.00 530.00 99.00 438.00
84.00 412.00 84.00 418.00
84.00 300.00 80.00 459.00

104.00 545.00 88.00 359.00
98.00 493.00 83.00 459.00
81.00 517.00 95.00 521.00
88.00 499.00 73.00 321.00
83.00 530.00 95.00 439.00

101.00 581.00 84.00 498.00
82.00 464.00 99.00 433.00
80.00 443.00 83.00 446.00
90.00 534.00 95.00 488.00
88.00 494.00 96.00 493.00
77.00 510.00 79.00 367.00

104.00 484.00 127.00 620.00
88.00 568.00 93.00 499.00
71.00 441.00 91.00 439.00

102.00 461.00 95.00 492.00

88.00 546.00 76.00 416.00



————— T - - S T S NS S - - W~ - — - ke WV - T _— — . W W W™ " W — = —_— ="

Y1 Y2 Y1 Y2
80.00 488.00 92.00 523.00
66.00 364.00 81.00 432.00
90.00 440.00 77.00 503.00
79.00 488.00 92.00 550.00
99.00 591.00 92.00 397.00
77.00 501.00 86.00 436.00
72.00 527.00 95.00 408.00
97.00 508.00 87.00 510.00
88.00 511.00 95.00 517.00
84.00 526.00 104.00 536.00
68.00 462.00 82.00 496.00

108.00 637.00 108.00 581.00
86.00 584.00 84.00 501.00
85.00 480.00 84.00 484.00
87.00 469.00 86.00 406.00
78.00 464.00 85.00 413.00
95.00 494.00 97.00 445.00

110.00 565.00 88.00 438.00
90.00 503.00 105.00 441.00
70.00 339.00 104.00 530.00
77.00 447.00 86.00 448.00

102.00 493.00 73.00 297.00
80.00 550.00 82.00 331.00
86.00 443.00 81.00 386.00
99.00 455.00 95.00 506.00
87.00 381.00 82.00 403.00
81.00 371.00 93.53% 565.00

104.00 591.00 84.78% 464.00
72.00 421.00 97.86% 615.00
69.00 345.00 92.23% 550.00
97.00 427.00 90.50% 530.00
89.00 461.00 94.48% 576.00
92.00 453.00 80.80% 418.00
72.00 364.00 92.06% 548.00
88.00 420.00 92.14% 549,00
92.00 396.00 88.25% 504.00
99.00 528.00 84.26% 458.00

114.00 534.00 73.96% 339.00
79.00 374.00 86.43% 483.00
99.00 426.00 95.26% 585.00
96.00 427.00 92.23% 550.00
94.00 475.00 88.07% 502.00
78.00 319.00 85.73% 475.00
89.00 475.00 88.25% 504.00
90.00 474.00 80.62% 416.00
92.00 473.00 91.36% 540.00
75.00 350.00 93.61% 566.00
80.00 431.00 87.81%* 499.00

89.20% 515.00
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