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1. OVERVIEW

In constructing meaningful confidence intervals it is convenient to first obtain
a poi;—t\;;imate such as a maximum likelihood estimate or a method of moments
estimate. Once a point estimate has been obtained, if possible, it is desirable to pro-
vide an interval based on the point estimate. Such point estimates are quite useful,
however they leave something to be desigg%(T/he problem is that the probability _
that the estimator actually e‘qiia,lréli-he va;lue of the parameter being estimated is 0. ‘ h/i #_L
(Tli”ebrobability that a continuous random variable equals any one valueis 0. Hence, AR
it would be nice to include some measure of the possible error of the estimate. For
instance, a point estimate might be given with an interval formed around the point
estimate along with some indication as to how likely the true value of the parameter
is to lie within the interval. Then instead of making inferences on point values of

the parameter, it is possilbe to make inferences on interval values of the parameter.

This form of estimation is known as interval estimation, which is to be the sub ject

of this paper. l""- t"'bf. _

The p,;f)vcf‘r./;vill be divided into sx‘zf main sections, the-first-being-this-overview
section. Section 2 introduces and defines confidence intervals. Section 3 contains
several examples of confidence intervals which are associated with the mean and
variance of the normal distribution. In Section 4, two-sample problems are consid-
ered for the normal and binomial distributions. Several general methods of finding

confidence intervals are given in Section 5, and Section 6 provides a summary.

2. CONFIDENCE INTERVALS
2.1 An Introduction to Confidence Intervals

One frequently sees estimates given in the form of the estimate plus or minus
a certain amount. For instance, the Bureau of Labor Statistics may estimate the
number of unemployed in a certain area to be 2.4 + .3 million at a given time,

feeling quite sure that the actual number is between 2.1 and 2.7 million. The
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average lifetimes of a certain kind of battery may be estimated to be 75 + 3.29
hours with the idea that the average is Qcirfy um to be outside the range 71.71
to 78.29. Notice that these estimates are given in the form of intervals.

To better illustrate these ideas, consider a particular example. Suppose that
a random sample (4.2, 6.4, 3.6, 8.6) of four observations is drawn from a normal
population with an unknown mean px and a known standard deviation 3. The

maximum likelihood estimate of 4 is the mean of the sample observations:
Z =5.1.

I will now find upper and lower limits which are likely to contain the true unknown
parameter value between them.
For samples of size 4 from the given distribution, the random variable

1{(.*—[1,
3/

Z =

is normally distributed with mean 0 and variance 1, where X is the sample mean,
and 3/2 is the standard deviation divided by the square root of the sample size:

7= The quantity Z has a density function

1.2
e" 3%

Ver

which does not depend on the true value of the unknown parameter; so the proba-

f2(2) = §(z) =

b

bility that Z is between any two numbers can be computed without knowledge of

the mean. For example,

1.282
P-1282< 2 <1282 = [ §(z)dz= 90. (2.1)
~1.282
In (2.1) the inequality —1.282 < Z, or
)—( -
—1.282
NEEYCRE

is equivalent to the inequality



p< X +(3/2)(1.282) = X +1.923,

and the inequality

Z <1.282

is equivalent to

p>X —1.923.

Thus, rewriting (2.1) in the form
P[X —1.923 < p < X +1.923] = .90,

and substituting 5.7 for X yields the interval

(3.777,7.623).

In general, an interval with random endpoints is called a random interval. In
particular, the interval (X —1.923, X +1.923) is a random interval that contains the
true value of p with probability 0.90. That is, if samples of size 4 were repeatedly
drawn from the normal population and if the random interval (X-1.923, X+ 1.923)
were computed for each sample, then the relative frequency of those intervals that
contain the true unknown mean p would approach 90 percent. The interval (3.777,
7.623) is referred to as a 90% confidence interval for p. Because the estimated
interval has known endpoints, it is not appropriate to say that it contains the true
value of 4 with probability 0.90. That is, the parameter p, although unknown, is a
constant, and this particular interval either does or does not contain u. However, the
fact that the associated random interval had probability 0.90, prior to estimation,
might lead one to insist that they are “90% confident” that 3.777 < p < 7.623. The
probability, .90, is called the confidence coefficient.



Similarly, intervals with any level of confidence between 0 and 1 can be ob-

tained. For example, using

P[-1.96 < Z < 1.96] = .95,

a 95 percent confidence interval for the true mean is obtained by converting the

inequalities, as before, to get

PIX -294<p<X +294] =095

and then substituting 5.7 for X to get the interval (2.76, 8.64).
Notice that there are an infinite number of possible intervals with the same

probability (with the same confidence coefficient). For example, because

P[-1.68 < Z < 2.70] = .95,

another 95 percent confidence interval for y is given by the interval (1.65, 8.22).
This interval could be thought of as being inferior to the one obtained before because
its length, 6.57, is greater than the length, 5.88, of the interval (2.76, 8.64),and thus
it gives less precise information about the location of W

- The method of finding a confidence interval shown in the example above is a
common method. The method involves finding, if possible, a function (the quantity
Z above) only of the sample and the parameter to be estimated which has a distri-
bution that does not depend on the parameter or any other parameters. Then any
probability statement of the form Pla < Z < b] = v for known a and b, where Z
is the function, will give rise to a probability statement about the parameter that
can, possibly, be rewritten to give a confidence interval. This method, or technique,
is fully described in Subsection 5.1 below. This technique is applicable in many
important problems, but in others it is not because it is either impossible to find
functions of the desired form or it is impossible to rewrite the derived probability
statements. These problems can be dealt with by a more general technique to be

described in Subsection 5.2.



2.2 Definition of Confidence Interval

In the last subsection a simple example was presented to give some intuition

for confidence intervals. In this subsection confidence intervals are defined.

Definition 1: Confidence Interval

Let X,,..., X, be a random sample from the pdf f(z;0). Let L
and U be two statistics satisfying I < U such that

Pl[L<8<U]=

where 0 < v < 1 and + does not depend on 6, then the interval
(I(x),u(x)) is called a 1007% confidence interval for 6. The
probability, v, is called the confidence coefficient or confidence
level, and the observed values /(x) and u(x) are called lower and

upper confidence limits, respectively.

Notice that one or the other, but not both, of the two statistics L and U may
be constant. That is, one of the two end points of the random interval (L, U) may
be constant. Also, a distinction should be made between the random interval
(L, U) and the observed interval (I(x), u(x)) as mentioned above. To emphasize this
dlstmctlon, it is useful to call (L, U) an interval estimator and (I(x), u(x)) an
interval estimate as is similar to the terminology used in point estimation.

Probably the most common interpretation of confidence intervals is based on
the relative frequency property of probability. That is, under the assumptions that
there exists a random sample of size n and that the sample came from a known
distribution, then if the procedure is repeated many times, it is expected that about
100v% of the intervals constructed capture the true, but unknown, value of §. Our
confidence is in the method. Notice that the confidence coefficient reflects the long-

term frequency interpretation of probability.



Often it is desirable to have either a lower or an upper confidence limit, but
not both.
Definition 2: One-Sided Confidence Limits

Let Xi,..., X, be a random sample from the pdf f(z;6). Let L
be a statistic such that

PIL<8]=~

where 0 <y < 1 and « does not depend on 6, then I(x) is called
a one-sided lower 1007% confidence limit for 6. Similarly,
let U be a statistic such that

Pl <U)=~

where 0 < 7 < 1 and v does not depend on 8, then u(x) is called
a one-sided upper 100v% confidence limit for 6.

Ezample 1

X1,.., X is a random sample of size n from the exponential distribution with pdf
gy = Lo-as0; 2.2
Fx(236) = 5/ Lg ) (a) (22)

I will derive a one-sided lower 1007% confidence limit for 4. It can be shown that
227, Xi/0 = 2nX/6 ~ x*(2n) where X; i = 1,...n are independent random
variables with distribution (2.2) (Bain and Engelhardt 1989, pp. 215-216). Denote
the v** percentile of a chi-square distribution with v degrees of freedom by x2(v).
Then

7= P2nX /0 < x2(2n))
= P[2nX/x%(2n) < 4].
If Z is observed, then a one-sided lower 100v% confidence limit is
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I(x) = 2n3 /x> (2n).

Similarly, for a one-sided upper 1009% confidence limit

v=P)2nX/0 > xf___, (2n)]
= Pl < 2nX/x}_, (2n)).

If z is observed, then a one-sided upper 100v% confidence limit is

u(x) = 2nz/x}_, (2n)

Suppose that it is desired to find a 1009% confidence interval for 8. If values

of &3 > 0 and oy > 0 are chosen such that o1 +oa; = a=1-4+, then it follows that

Plxa, (2n) <2nX /8 <xi . (2n)]=1—a; — ay,

and thus
PPnX/x:_,, (2n) <8 < 2nX /X2 (2n)] = 7.

Commonly, a; = «3,. This equality is known as the equal tailed choice and implies

that ay = o, = /2. The corresponding confidence interval has the form

(2nﬁ/xf_a/2 (2n), ZnE/xi/z (2n)).

For some problems, the equal tailed choice of a; and a,; will provide a confidence
interval of minimum expected length, but for others it will not. For example, the
above corresponding confidence interval does not have this property because the

chi-square distribution is not symmetric.

Ezample 2
Consider a random sample of size n from the uniform distribution X; ~ UNIF(0, 9),
§ > 0, and let X,,.,, be the largest order statistic. I will find a 100(1 — @)% equal
tailed confidence interval for §. The pdf of X is
1
fx(z;0) = ‘é](o.e)(w),
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so the CDF is
Fx(z;8) = ‘:;“I(o,e) ().

The CDF of X,,., is

mn:n n
Gn(@wn i) = [Fx (omni )" = [Z22]" L ) (0m),

Let @ = 5—’;‘&—, then
Fo(q)=PlQ < 4

'Xﬂ:ﬂ S q]

= P[Xn:n S 99]

_p

= G',,(qG)

9 n
= (2)" =t on(@)

SO

dF
folg) = i ng" " Iio.6)(q),

This implies

Q= X;"‘ ~ BETA(n, 1).

Thus values of @ and b can be found from the beta distribution such that

Xn:n

1——a=P[a< <b}
= PlXnn /b < 8 < Xp.n /0]

so that (Zn:s /b, Zp.m fa) is a 100(1 — a)% confidence interval for 8 with confidence
coeficient 1 — c. If an equal tailed confidence interval is desired, values of a and b

can be found by solving the following two equations
Fo(a) =a/2 and Fa(b)=1—a/2.
Substituting in the CDF’s, the solutions are
a” =af2 and " =1~ a/2
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S0

a=¥a/2  and b= ¥1-aj2.

Hence, substituting in for a and b the following 100(1 — &)% confidence interval for
6 is obtained

(Znn/ V1= af2,20m/ ¥ a]2).

Also, the one-sided lower and upper 100(1 — @)% confidence limits for 6 can be

found in a similar manner.
If

X;"‘ ~ BETA(n, 1),

then

l—a=PX.n/8< ¥Y1- o
= P[Xpn /¥l -a < 4]

If ¢,,,, is observed, then a one-sided lower 100(1 — @)% confidence limit is

(x) =

Yi—a
Similarly, for a one-sided upper 100(1 — )% confidence limit

X;”‘ > {/al

l—a=P|

= P[0 < Xn:n/m;

If 2., is observed, then a one-sided upper 100(1 — @)% confidence limit is

3. CONFIDENCE INTERVALS FOR THE NORMAL DISTRIBUTION

Suppose Xj, ..., X, is a random sample of size n from the normal distribution

with mean x4 and variance o2, denoted by N(p,0?). Often it is of interest to
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find limits within which a parameter should be expected to be found with certain
probability. For example, it may be desired to know the lower (c1) and upper ()
limits between which the average IQ (1) of students at a certain college will fall,

given a certain probability, say, of 95 percent. In symbols,
Play < p < a3] =0.95.

This section shows how such intervals (confidence intervals) are found when esti-

mating the mean and the variance.
3.1 Confidence Intervals for the Mean

Let X be a random variable that is normally distributed with mean p and
variance 2. Two cases need to be considered depending on whether or not o2 is
known. First consider the case when o2 is known. Following from Hogg and Craig
(1970, p. 163), X has the distribution N{p, ‘; ), and ==k has the distribution
N(0,1), whatever u. Hence values of a and b (not dependmg on x) can be found
such that

X —n ]_
P[a<a/\/ﬁ<b =1-a.

This equation can be solved for i to read

PIX —bo/vn<p<X—ao//u]l=1-a

so that (X — bo/\/m, X — ao/\/n) is a random interval having probability 1 — o of
including the fixed, but unknown, value of u. After the random experiment has been
performed and the value of z = 2.7, zi/n is observed, a 100(1 — @)% confidence
interval for p is given by the interval (z - bo//n,z — ao/ v/n) where a and b are
found by using the normal distribution.

Because the normal distribution is unimodal and symmetric, the shortest such
interval has a = —b,b > 0. Thus, if the y** percentile of a normal distribution is
denoted by z,, then another form (equal tailed choice and shortest interval) of a

100(1 ~ )% confidence interval for p is
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(Z—21_app0/v/n,z+ Zi-a).

One-sided confidence limits for 4 are found in &

X—p
o/vn
=PlX —2_40/vn <

l-a:P[ < z.

If Z is observed, then a one-sided lower 100(1 — @)Y
(X) =% ~21_q0/y
Similarly, a one-sided upper 100(1 — a)% confidenc
uX)=Z+ 21,0/

Ezample 3

Consider finding a 95% confidence interval for the av
ing a certain college. A random sample of 100 stud
mean is found to be # = 110. Assume that the 1Q’

a standard deviation, o = 20 points.

From a normal table,

Zyajy = Zgrs = 1.

S0

1.96¢0
V100

Thus, the specific 95% confidence interval is

- 1.9
<pu< X ——

V1

P[X_

(110—-1.96>< ,110 + 1.€

20
/100
or

(106.08,113.92),
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so (106.08, 113.92) is a 95% confidence interval for
attending a certain college.
Suppose that it is desired to find the one-sidec

From a normal table,
Zica = Zgs = 1.64

so if Z is observed, then a one-sided lower 100(1 — .
(X) =2 —z_o0/y/n =110 —1.645 >

and a one-sided upper 100(1 — @)% confidence limi
u(X) =Z + 2;_o0/v/n = 110 + 1.645 x

Notice that the confidence limits of the previou

o. Thus, if ? were not known, the end points of th

statistics, and the sample data would not yield an :

With a slightly different derivation it is possible to :

even if o2 is an unknown “nuisance parameter”.

Now consider the case in which o2 is unknown.

the results in terms of the unbiased estimator of th:

n—1

52 — Z (Xi _X)
1=1

in order to use some known distributional properti

X—p
N ~ N(0,1)

and

(n—1)52

< ~X(n-

In accordance with the definition of the Student’s

the random variable

13
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v100 = 106.71
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fidence intervals depend on
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val with known end points.

a confidence interval for g,

ill be convenient to express
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tribution, it is known that



has a t distribution with n — 1 degrees of freedon

Hence values of @ and b can be found such that

X —p
S//n

=PX -bS/\/n<pu<X-
so that (X — bs/\/n, X — as/\/7) is a random i:
of including the fixed, but unknown, value of p. £

1——a:P[a<

been performed and the values of # and 32 = (n—1
100(1 ~ )% confidence interval for u is given by th
where a and b are found by using the Student’s ¢ «
Because the graph of the pdf of the random -
metric about zero, the shortest such interval is ob:
if the ¥** percentile of the ¢-distribution with v ¢

. ty(v), then another form of a 100(1 — )% confide

(f —_ tl-—a/Z (n —_ 1)5/‘\/_7;, T + tl—oz

One-sided confidence limits for x are found ir

_p|X—n
l“a—P[S/\/ﬁ_
=P[X——t1_a(n—1)5’/\

< tl—o

If Z and s are observed, then a one-sided lower 10/
X)=2—t;o(n—-1)
Similarly, a one-sided upper 100(1 — &)% confiden
uX)=Z+t_o(n—1
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1ed with @ = —b,b > 0. Thus,
rees of freedom is denoted by

: interval for p is

n = 1)s/v/m).
similar manner.

)

< pl.

— a)% confidence limit is
/n.
limit is

vn.



Ezample 4

The following data are weights (in pounds) of stuc- ts attending a certain college:
160, 170, 165, 175, 180. Assume that the data ar observed values of a random
sample from a normal distribution, X; ~ N (p,0%) Using the above sample find
a 95% confidence interval for the average weight o. students attending a certain

college.

From a ¢ table,

tl—a/z (n - 1) = t.g75 (4) = 2.78

SO

In this case £ = 170, and

\/z 1(:1:, —1m0p

Thus, the specific 95% confidence interval is

7.9 7.9
170 — 2.78 x ~=, 170 + 2.78 x )
( V5’ V5

or

(160.2,179.8),

so (160.2, 179.8) is a 95% confidence interval for the average weight of the students

attending a certain college.

Suppose that it is desired to find the one-sided confidence limits for u.

From a t table,

tica(n — 1) = tos(4) = 2.132,
so if  and s are observed, then a one-sided lower 100(1 — @)% confidence limit is
(%) =2 — 1o (n—1)s/v/n = 170 - 2.132 x 7.9/v/5 = 162.5,
and a one-sided upper 100(1 — a)% confidence limit is
u(X) =Z 4t a(n—1)s/v/n =170+ 2132 » 7.9/v/5 = 177.5.
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3.2 Confidence Intervals for the Variance

Because the normal distribution depends on o2, as well as on #, information

? is needed to specify what normal distribution is being worked with. Al-

about o
though confidence intervals for ¢ are not used as frequently as those for p, they
are still important, particularly if there is interest in the reliability and spread of
the observations.

When constructing confidence intervals for o2, two cases must be considered
depending on whether or not y is assumed known. First consider the case when
# is a known number. The random variable Z; = (X; — p)?/o? ~ x%(1), and the
random variable Y = 7 | Z; ~ x?(n) (Mood, Graybill and Boes 1974, p. 242).

Hence from tables, values of a and b can be found such that

n R 2
1—.a:P[a<z=’=1()‘;‘ ) <b]
o
n - 2 n X — 2
:P[Zizl("}zl lu') <o_2 < Zz:l(xl IJ’) ]
a

- (Xi—p)? oK) . . e
so that (Z——E‘ (b #) , —Z—‘EL( #) ) 1s a random interval having probability 1 — o

a

of including the fixed, but unknown, value of o2. After the random experiment has

been performed and the values of z; are observed, a 100(1— @)% confidence interval

. (zi—p)? o (zi-p)?
for o2 is given by the interval (2—*5’- (b #) , —ZLEI (a #) ) where a and b are found

by using the chi-square distribution with n degrees of freedom.

Observe that there are no unique numbers a < b such that Pla<Y < =
1 —a. As was mentioned in example 1, a common method is to form an equal tailed
confidence interval, in which, P[Y < a] = @/2 and P[Y > b] = a/2. Thus another
form (equal tailed choice, but not shortest interval) of a 100(1 — @)% confidence

interval for o2 is

(Ehw Tl 7).
A ) )

One-sided confidence limits for o2 are found in a similar manner.

P [Z?:l (‘X;i - /v‘)2 < Xf_a (n)}

g

l—a=

16



E?: ('Xt - /’1’)2
<.

If the values of z; are observed, then a one-sided lower 100(1 — @)% confidence limit

|

is

n EPRY
I(x) = iz (@ = #)*
Xl-—a (n)
Similarly, a one-sided upper 100(1 — @)% confidence limit is
E ?:1 (w‘i - H)Z
X&(n)

u(x) =

Ezample 5

The following data are IQ scores of students attending a certain college: 112, 128,
109, 127, 120, 118. Assume that the data are observed values of a random sample
from a normal distribution with mean x = 119, X; ~ iid N(119,0%). Using the
above sample find a 98% confidence interval for the variance of the IQ scores of

students attending a certain college.

From a x? table,
Xasz (n) = xo: (6) = 0.87
and

Xf-a/z (n) = X.299(6) = 16.81,

SO
> o (Xi —119) ot < o (X —119)?
16.81 0.87

:, = 0.98.

In this case

6
> (zi — 119)% = 296

i=1

Thus, the specific 98% confidence interval is

( 296 296)
16.817 0.87

or

(17.6,340.2),

17



so (17.6, 340.2) is a 98% confidence interval for the variance of the IQ scores of the
students attending a certain college.
Suppose that it is desired to find the one-sided confidence limits for o2,

From a x? table,
Xa(n) = X%, (6) = 1.13

and

Xi—a (n) = X.298(6) = 15.03

so if the values of z; are observed, then a one-sided lower 100(1 — @)% confidence

limit is

Z?::l (zi — p)? _ z:?=1 (z; —119)? 296

= = = =1 .6
== 15.03 T5.03 ~ 1009
and a one-sided upper 100(1 — @)% confidence limit is
n 2 6 2
r (s ® (z:i— 119 29
u(x) = Lim(mowf 2 ) 0 26195

2 (n) 1.13 T 1.13

Notice that the confidence limits of the previous confidence intervals depend on
pt. Thus, if o were not known, the end points of the random interval would not be
statistics, and the sample data would not yield an interval with known end points.
With a slightly different derivation it is possible to form a confidence interval for
o?, even if u is an unknown “nuisance parameter”.

Now consider the case in which 4 is not known. This case can be handled by

recalling that
(n—1)52

o?

~x*(n—1).
Hence from tables values of ¢ and b can be found such that

_ 2

o?

o

_p[emne

(n—1)8? 2 _ (n——l)S’z]
b \ a

18



so that (("“i)sz , (n—i)s" ) is a random interval having probability 1 — & of includ-
ing the fixed, but unknown, value of ¢?. After the random experiment has been

performed and the value of s? is observed, a 100(1 — @)% confidence interval for

(n—-1)s*
) a

2

o* is given by the interval (L"“; L ) where a and b are found by using the

chi-square distribution with n — 1 degrees of freedom.
Once again, if a and b are replaced with the appropriate chi-square percentiles,
the following equal tailed 100(1 — a)% confidence interval for o2 is obtained when

 is unknown

(n=1)* (n-1)s* }
( )

Xf_a/z (n‘ - 1) ’ Xi/z (n - 1)

One-sided confidence limits for o2 are found in a similar manner.

(n—1)5%
2

1~a=P[ = <xf”a(n—-1)]

(n—1)52
=F [xf_a(n~ )

If the value of s? is observed, then a one-sided lower 100(1 — )% confidence limit

<02].

is
(n—1)s?
X?-—a (TL - 1) .

Similarly, a one-sided upper 100(1 — a)% confidence limit is

I(x) =

Ezample 6

Suppose teachers are interested in the variability of the ACT performance of college
bound seniors in Montana. They assume that the ACT test scores are normally
distributed with mean p and variance o?, and want a 98% confidence interval for
0. A random sample of 30 seniors and their ACT test scores gives & = 1150 with
s? =425,

From a x? table,

Xas2(n—1) = x%,(29) = 14.26

19



and

Xi-a/2 (1 = 1) = x%o(29) = 49.59,

S0

<0c

[ 2957 _ , _ 298"
49.59 14.26

] = 0.98.

In this case

s? = 425,

Thus, the specific 98% confidence interval is

(29 x 425 29 x 425)
49.59 ' 14.26

or

(248.5,864.3),

so (248.5, 864.3) is a 98% confidence interval for the variance of the ACT perfor-
mance of college bound seniors in Montana.
Suppose that it is desired to find the one-sided confidence limits for al,
From a x? table,
' X2 (1 1) = 3 (29) = 15.57

and

X1« (n—1) = X% (29) = 46.70
so if the value of s? is observed, then a one-sided lower 98% confidence limit is

(n—1)s? 29 xs? 29 x 425

I(x) = = = = 263.
=20 )~ 4670 — 670 - 20392
and a one-sided upper 98% confidence limit is
-1 2 2 2
u(x) = (n—-1)s> 29xs 29 x 425 79150,

Cx2(n—1) " 1557 1557
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4. TWO-SAMPLE PROBLEMS

In this section, two-sample problemé’are examined. Usually two-sample prob-
lems fall into one of two different formats: either two different treatments are applied
to two independent sets of similar subjects or the same treatment is applied to two
different kinds of subjects. For example, testing whether rats raised by themselves
(treatment X) react differently in a stress situation than rats raised with siblings
(treatment Y) would be an example of the first type. On the other hand, examin-
ing two groups of students A(high income group) and B (low income group) to see
whether there is a significant difference between their weekly allowances would be
an example of the second type.

Inferences in two-sample problems usually reduce to a comparison of param-
eters such as means or probabilities. It might be assumed, for example, that the
population of responses associated with, say, treatment X is normally distributed
with mean p; and standard deviation o, while the Y distribution is normal with
mean py and standard deviation o,. Then it may be of interest to know whether one
population has a smaller mean than the other. For example, the weekly allowances
of the students discussed above.

Sometimes, although less frequently, it becomes more relevant to compare the
variabilities of two treatments. A food company, for example, trying to decide which
of two types of machines to buy for filling cereal boxes would be concerned about
the average weights of the boxes filled by each type, but they would also want to
know something about the variabilities of the weights. Obviously, a machine that

produced high proportions of “underfills” and “overfills” would be undesirable.
4.1 Two-Sample Normal Procedures

Assume that X7, ..., X,,, is a random sample of size n; from X ~N(p;,0?) and
Y1,.., Y, is a random sample of size n, from Y ~N(p2,02). The sample sizes n,
and n, need not be the same. Let X,52.7, 52 be the sample mean and sample

variance for the respective samples from the two distributions. When sampling from
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two normal distributions, it is possible to find confidence intervals for the difference

in the means and variances. These are the subjects of the next two subsections.
4.1.1 Procedure for means

Suppose that the random variable X has a normal distribution with unknown
parameters p; and o?. Assume that a modification can be made in conducting an
experiment so that the mean of the distribution will be changed; say, increased.
After the modification has been done, let the random variable now be denoted by
Y, and suppose Y has a normal distribution with unknown parameters p; and of.
It is hoped that y, is greater than p,, or put another way, that Ha2 — p1 > 0. Thus
it is desired to make statistical inferences by constructing a confidence interval for
the difference pu; — py and observing whether the interval contains negative values
or not.

When constructing confidence intervals for the difference of means, (s — fii,
two cases need to be considered depending on whether o? and o2 are known or
not. First consider the case when the distribution variances are possibly different,
but known. Thus, X ~N( Ui, %?—) and ¥ ~N( Ua, %g—) In accordance with Hogg
and Craig (1970, p. 158), the difference ¥ — X is normally distributed with mean

2 2
f2 — py and variance :—:—g— + % Thus the random variable

g T = %)= (i =)
Viid

has the distribution N(0, 1), and it follows that

l—a=Plzgp < Z <21_q]

f

— — o2 o? N _ o2 o2 -I
:P“Yfm~amm¢é+;f<m~m<uham_am¢i+;f

so that ((Y—X) — Z1_a/2 \/%%— + %?,(Y’—)_() — 242 \/%g- + %’:-—) is a random in-

terval having probability 1 — @ of including the fixed ,but unknown, difference of
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p2 — p1. After the random experiment has been performed and the values of ¥ and

T are observed, a 100(1 — @)% confidence interval for Mz — p1 is given by the interval

((y—w)*z1_a/z\/-"+-‘- (y——-m)~zq/2\/;;:-+;l;).

Ezample 7

Two groups of pigs were fed different diets. A random sample of 9 pigs was selected

from each group and their sample means were found to be z = 80 Ib., § =90 Ib.
It is assumed that the weights are normally distributed and the standard devi-

ations are 0; = 9 lb., o, = 18 Ib. Consider finding the 90% confidence interval for

the difference of the means.

From a normal table,

Zrajp = Zos = 1.645

S0

. 187 92 o 18

Thus, the specific 90% confidence interval is
((80 —90) — 1.645 x 6.708, (80 — 90) + 1.645 x 6.708)

or

(—21.035,1.035),

so (-21.035, 1.035) is a 90% confidence interval for the difference of the means.

The second case to consider is when the distribution variances are possibly dif-
ferent and unknown. In this case, if the variances are different, an exact confidence
interval can not be found. Hence, I will consider this case in two parts: First, when
the variances are equal; and Second, when the variances are different.

Consider first when the distribution variances are equal. As was previously
noted in this paper, it is known that

(n1 —1)87

ol

(nz - 1)53

~x*(n1 —1) and pr ~ x*(ny — 1).
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Hence,

(n, —1)82 + (n, — 1)57

o? g

V= ~ x*(n, +ny — 2).

Using the standard normal random variable, Z, from the first case now yields the

random variable

_ A
VYV +ny —2)

which has a ¢ distribution with ny +n, —2 degrees of freedom. The random variable

T can be simplified by denoting what many text books call the “pooled” variance
by
(ny —1)S2 + (ny — 1)5’2

ny + g — 2

5p =

Then, L
T — (Y“X)“(#z*‘#l)

VG
If ta/Z —_ ta/z (7‘61 ‘)L Ng — 2) a.Ild t1-C!/2 = tl__a/z (nl +n2 — 2)’ then

1*—Cl-—_—P[ta/2 <T<t1_a/2]

v _ X 1,1 - 1 1]
:P[(Y—X)—tl—-a/ZSp\/;:"";;<ﬂ2“‘ﬂ1<(Y"‘X)—-—ta/25p\/—-—+__

so that ((Y -X) - t1-a/2 Sp ru + 5 ,(Y -X)- ta/2Sp \/n + ) is a random

interval having probability 1 — o of including the fixed, but unknown, difference
of pz — pi;. After the random experiment has been performed and the values of

s3,5%,7 and 7 are observed, a 100(1 — a)% confidence interval for 4 is given by the

interval ((y—m)-t1_a/2 spy/ = +—,(y m)——ta/zsp\/n ’

Ezample 8

Two diets are being tested in a controlled laboratory experiment. Fifty overweight
people have been randomly divided into two groups, say group X and group Y,
of 15 and 35. Notice n, # ny. A different diet is used for each group and each
person’s weight loss is recorded at the end of a 12 week period. If the weight losses

are assumed to be normally distributed with equal variances and the results are
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X =981bs., s? =19.7,¥ = 11.7 lbs., s? = 6.3, consider finding the 95% confidence

interval for the difference of the means.

From a t table,
ti—ayz (N1 + 12 — 2) = 975 (48) = 2.0106

SO_
N, 1 1 5 o 1 1
P[(Y——)&)——2Sp\/ﬁ+§g < W — Hq <(Y'—X)+25p\/——'+—-—J = .95.

In this case, ;
o (15-1)x19.7+ (35 -1) x 6.3

P 48
Thus, the specific 95% confidence interval is

= 10.208.

((11.7 - 9.8) — 2.0106 x 10.208 x 0.309, (11.7 — 9.8) + 2.0106 x 10.208 x 0.309)

or

(—4.442,8.242),

so (-4.442, 8.242) is a 95% confidence interval for the difference of the means.

~ The second part, when the distribution variances are different, is a difficult
problem and is known as the Behrens-Fisher problem. This problem is difficult
because no random variable exists whose distribution does not depend on any un-
known parameters. Because the variances are unknown it isn’t possible to form
a variable from the normal distribution, and because the variances are unequal it
isn’t possible to from a variable from the ¢ distribution. According to Bain and
Engelhardt (1989, p. 358), it is possible to form random variables which will lead
to approximate confidence intervals but not exact. If it happens that the ratio of
the variances is a known constant then the above 7' random variable can be used

by replacing the ratios of the variances by the constant.
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4.1.2 Procedure for variances

Suppose that the random variable X has a normal distribution with variance
of. Assume that although o? is not known, it is found that the experimental
values of X are widely spread, so that ¢? must be quite large. It is believed that a
certain modification in conducting the experiment may reduce the variance. After
the modification has been done, let the random variable now be denoted by Y, and
suppose Y has a normal distribution with variance 2. It is hoped that o2 is less
than o}, or put another way, that 02/0? < 1. Thus it is desired to make statistical
inferences by constructing a confidence interval for the ratio 03/0? and observing
whether the interval contains values greater than one or not.

When constructing confidence intervals for the ratio of the variances, o3 /o2,
two cases need to be considered depending on whether the distribution means are
known or not. First consider the case when the distribution means are known.
Following from Mood et al. (1974, p. 242), the random variables

V= i (—{(i(—;i—lﬂ) 2 ~x*(ny) and W = 3 (5—-_—-&3) 2 ~ x*(n;)
i=1

g
=1 2

are obtained. Thus from Mood et al. (1974, p. 247), it follows that

i ~ F(nl,ng)

IgRl=

where F(ny,n;) denotes the Snedecor’s F Distribution with n; and n, degrees of
freedom. Hence, if the 1004* percentile of the F distribution with n, and n,

degrees of freedom is denoted by fy(n1,n,). It follows that

'ngV
1

WV < fica/2 (nl,nz)]

l-a=P [fa/z(nlynZ) <

e’ E :1:1"1 (X1 — 1 )2 0'% Ty E:;ll (JYI' — H1 )2
fasz (nimz)ny 35 ::1 (Yi-u2)®  fi_as (nima)ny 3, ::1 (Y5-u2)?
nzZ::l (Xi—m )? ’ ngzgl (Xi—p1)?
terval having probability 1 — « of including the fixed but unknown, ratio o2 /02.

_p {falz (n1,m2)n D72, (Vs — ma)* 42 - Jimasz (n1,m)na Z72,(Y; - uz)z}

) is a random in-

so that (
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After the random experiment has been performed and the values of y; and z;

are observed, a 100(1 — a)% confidence interval for o2 /o2 is given by the interval
( fasz (n1ma)n, E::l (5=12)®  fi_asa (Ruma)ny 2072 (y;—pp)?

RS

e e ).

Ezample 9
Suppose there are two machines A and B producing a certain item and it is wished
to check whether the variances of the weights of the items are the same for both

machines. Random samples of n; = 4 and ny; = 5 are selected with the following

results:
A:15,17,16,16  (o0z.)
B :11,12,9,11,12 (oz.).
Assume that the data are from normal distributions with means #y = 16 and

p2 = 11. Using the above samples, consider finding a 95% confidence interval for

the ratio of the variances of the weights of the items.

From an f table,
fasz(n1,m2) = fozs(4,5) = 0.107
and
fi-as2(m1,m2) = fors(4,5) = 7.388,
SO ‘
0.107 x4 x X _ (Y; —11)* 42  7.388 x4 x T —11)

2
<=< = 0.95.
5x 2, (Xi —16)? o 5 X 2;1 (Xi —16)?

In this case
4

(X —16) =2,

=1

and

JU‘

(¥; - 11)° = 6.

1t
A

i

Thus, the specific 95% confidence interval is
(0.257,17.731),
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so (0.257, 17.731) is a 95% confidence interval for the ratio of the variances.

The second case to consider is when p; and g, are unknown. As was seen in the
last subsection, the independent random variables (n, —1)52/o? and (n2 —1)S%/0?
have chi-square distributions with ny — 1 and n, —1 degrees of freedom, respectively.
Then in accordance with the definition of the Snedecor’s F distribution, it is known

that the random variable

o (m=1S /o —1)] _ Sio3
(n2 = 1)§3/[o3(n; — 1)] ~ SZo?
has an F' distribution with ny — 1 and ny — 1 degrees of freedom. Thus it follows
that
l—a=Plfap(m-1n-1)<F< ficajz (n1 — 1,03 — 1))

2
=P [fa/z (n'l - 1:n2 - 1)522/512 < _Z'%' < fl—a/z (nl - 17n2 - 1)53/512}
1

so that (fu/z(n1 —1,np — 1)S3/5%, ficase (n1 — 1,2 — 1)82/52) is a random in-
terval having probability 1 — a of including the fixed ,but unknown, ratio ;i—
1

After the random experiment has been performed and the values of s and s?

2

are observed, a 100(1 — )% confidence interval for 2% is given by the interval
1

(fa/Z (72.1 - 1,np — 1)‘5%/357]{1—0:/2 (nl - 1,7’L2 - 1)‘9%/3%) .

Ezample 10

Suppose two different processes A and B are used to manufacture light bulbs. The
life of the light bulbs of process A have a normal distribution with mean Me and
standard deviation o,. Similarly, for B, it is ps and oy. Suppose that it is wished to
check whether the variances of the light bulb lives are the same for both processes.

Let random samples yield the following data:
SampleA SampleB

ne = 17 ny = 21
T, = 1200hr. Ty, = 1300hr.
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8q = 60hr. Sp = 50hr.

Using the above samples, consider finding a 98% confidence interval for the ratio of

the variances. From an f table,
fajz(na —1,m — 1) = f4;(16,20) = 0.308

and

ficajz(na — 1, — 1) = f40(16,20) = 3.05,

Bl

2
P [(0.308)53 /82 < gg. < (3.05)5? /53} = 0.98.
1

Thus, the specific 98% confidence interval is
(0.308 x (50)?/(60),3.05 x (50)%/(60)?)

or

(0.214,2.118),

so (0.214, 2.118) is a 98% confidence interval for the ratio of the variances.
4.2 Two-Sample Binomial Procedure

Many problems take the form of comparing two proportions. For example,
there may be two processes A and B where A has P, and B has P, defective items.
Suppose that it is of interest to know if P, = P;. Then by constructing a confidence
interval for Py — P, it is possible to check if zero is contained in the interval.

Let X; and X, be two independent random variables with binomial distribu-
tions BIN(n, P;) and BIN(n,, P,), respectively. Thus, X; and X, can be thought of
as denoting the numbers of successes observed in two independent sets of n; and n,
Bernoulli trials, respectively. Because the mean and the variance of X;/n; — X, /n,
are, respectively, P, — P, and P;(1 — P, )/n1 + P2(1 — P,)/n,, then it follows from
the Central Limit Theorem that
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(X1/m1 — X3/n3) — (P, — Py)
'\/Pl(l - Pl)/nl -+ Pg(]. - Pg)/nz

=5 Z ~ N(0,1),

in which -2+ denotes convergence in distribution as the sample size becomes large.
Also it is known that X;/ny(1 — X;/ny)/ny -5 Pi(1 — P,)/n, and Xa/na(1 —
X3 /n3) /g £, P;(1 — P;)/ny, in which -2 denotes convergence in probablility as

the sample size becomes large. Thus, dividing by

[X1 [ra(1 = Xy /) /ny 4 Xy /na(1 — Xy /ng)/ng ] 1/2
P1(1 — P]_ )/77,1 + Pz(l - Pg)/ng

gives

(X1/n1 — Xz/n2) — (P — P,)

2, Z ~ N(0,1).
\/JY1/n1(1—X1/TL1)/n1 +X2/n2(1——X2/n2)/n2 ( )

Let Var, = Xy /n1(1 — X1 /ny) /[y + X2 /na2(1 — X3 /nz) /s,

then for large n; and n.,,

l—a=Plzg; <Z < 2_q]

¢ — X
.y [(3(.1 Xy ey VTar <P -B (X _.za/z\/va,,p] ‘

g Ny ny 7}

If the experimental values of X; and X, are, respectively, z; and z,, then the in-

terval (z; /n, —z2/n2)t 21 g2 \/a;l/nl(l —z1/m)[n + 23 /na(1 — €2 /ng)/n, pro-

vides an approximate 100(1 — @)% confidence interval for P; — P,.

Fzample 11

Let two stochastically independent random variables Y] and Y,, with binomial dis-
tributions that have parameters n; = n, = 100, P;, and P,, respectively, be ob-
served to be equal to y; = 50 and y, = 40. Consider finding an approximate 90%

confidence interval for P, — P;.

From a normal table,

Zl———oz/2 = ng5 - 1645
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S0

Y Y, T— ‘ Y Y;z _______] B
[(155 ~ Tpg) ~ 1648V Vary <P - Py < (5 - Tog) T 1645V Var,| =0.90.

In this case,
vary = y1/100(1 — y1/100)/100 + y,/100(1 — y,/100)/100

= 50/100(1 — 50/100)/100 + 40/100(1 — 40/100)/100
= 0.0049.

Thus, the specific approximate 90% confidence interval is
((50/100 — 40/100) — 1.645 x 0.07,(50/100 — 40/100) + 1.645 x 0.07)

or

(—0.015,0.215),

so (-0.015, 0.215) is an approximate 90% confidence interval for the difference of

the proportions.
5. METHODS OF FINDING CONFIDENCE INTERVALS

Through out this paper, confidence intervals have been constructed simply by
using properties of CDF’s. That is, first a random variable is constructed with a
known distribution which doesn’t depend on any unknown nuisance parameters.

Then with that CDF, the following useful result is used, namely
Pla <z < b = F(b) — F(a).

In most instances, F(b)— F(a), is set to equal 1—a, and a and b are, respectively, the
@/2 and 1 — /2 quantiles of the distribution (the equal tailed choice). After a and
b are determined by «, then the inequality {a < z < b} in the probability statement
can be rewritten, or inverted or “pivoted,” to yield a probability statement for the
parameter of interest. This technique for finding confidence intervals is called the

pivotal-quantity method and will be more formally defined in the next subsection.
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There is a problem with the technique described in the last paragraph. The
problem being that it isn’t always possible to find a random variable with a known
distribution which doesn’t depend on any unknown parameters. Hence, two other

methods are presented in this section which circumvent this problem.
5.1 Pivotal-Quantity Method

As before, assume that X, ..., X,, is a random sample of size n from the pdf
f(z; 0) parametrized by 6. The goal is to find a confidence interval estimate of 8

where other nuisance parameters may also be present.

Definition 3: Pivotal-Quantity

A function u(Xy, ..., Xn;6) whose distribution does not depend
on any unknown parameters is known as a pivot function for §.
IfU = u(Xy,...,Xn;0) is a random variable whose distribution
does not depend on any unknown parameters, then U is called a

pivotal-quantity.

Notice in the definition that the word “If” is used. This is because a pivotal-quantity
doesn’t always exist and a different method must be used. Examples of distributions

which don’t yield pivotal-quantities will be given in the next subsection.

Ezample 12

X1,y X, is a random sample of size n from the exponential distribution with pdf
fx(zin) = e I, o) ().
I will show that Q = Xi., — 7 is a pivotal-quantity and find its distribution.

The CDF of X; is
Fx (z;m) =/ frltmydt=[1-e @] 1 (a),
7
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The CDF of X;., is
Gi(@1m;n) =1 =1 — Fx(z1:0;7)]"
=1-[1-1 +em-m|”

= [1 — e~™E1n-n) } [(moo) ($1:n)-

Thus,
Fo(q)=PlQ < g

= P[X1n — 1 < g
= P[X1., < g+7)
= Gi(q +1)
=1—e @ < (1] (g +7)
= [1= €] Ijg,00) (q)

s0
folg) = %f-;' = ne”" Ijo,00) (9)-
This implies
| Q = Xim — 7 ~ EXP(1/n).

& = X1., —n is a random variable that is a function only of X1, ..., X, and 7, and its

distribution (EXP(1/n)) does not depend on 5 or any other unknown parameters.

Hence by the definition of pivotal-quantities, @ is a pivotal-quantity.

HU =u(X;,...,Xn;6)is a pivotal-quantity, then for any fixed 0 < v < 1 there

will exist values a and b depending of v such that Pla < U < b] = 5. Now, if

for each possible observed sample (Z1,.2n),a < uzy, o Zn;8) < b if and only

if O(z1,...,2,) < 8 < u(z1, ...,z ) for sample statistics 6, and 0, (based on U,

but not depending on §), then the interval (6,(z1, ..., z, ), 0u(Z1, ..., zn)) is a 1004%

confidence interval for §. Notice that different pairs of numbers o and b will produce
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different pairs of 6, and 6,. Hence, there are an infinite number of possible intervals

with the same probability (see page 5 where this concept was noticed before).

Fzample 18
I will continue with example 12 and derive a 1007% equal-tailed confidence interval

for 7.
Values of ¢; and ¢; need to be found so that
7=1-a=Plg <Ximn -7 < g
= P[Xl:n — g2 <1< Xy — Q1]-
Recall from example 12,
Fo(g) = [l — €™ 11500 (9)-

If an equal-tailed confidence interval is desired, values of g1 and g, can be found by

solving the following two equations
Fo(1)=a/2 and Fgy(q)=1-a/2.
Substituting in the CDF’s, the solutions are
1—e™ =a/2 and 1-e"2 =1-q/2

@ = (_“_71;) In(1 - «/2) and ¢, = (—-71;) In(a/2).

Hence, a 1007% equal-tailed confidence interval for n is given by
(mlzn —Qq2,T1:n — fh)

- (mlm + (-}L—) In(a/2), 21 + (;];—) In(1 - a/2)>

where y =1 — .

34



5.2 Statistical (General) Method

If a pivotal-quantity is not available, it may still be possible to find a confidence
interval for a parameter . Specifically, let X, ..., X,, be a random sample of size n
from the pdf f(z;6), and let S = s(X;, ..y Xn ) be some statistic. Also, let fs(s;6)
denote the pdf of S. The statistic S can be selected in many ways. For instance,
S could be taken to be a sufficient statistic for 8, if one exists, or a point estimator
such as the maximum-likelihood estimator of 4. Although this method works for §
as a discrete random variable, I will assume that § is continuous to more clearly
explain this technique. Now, for each possible value of 8, assume that two strictly
monotone increasing functions, say hi(f) and khy(6), can be defined such that

By (6) o0
/ fs(s;0)ds = a; -and / fs(s;8)ds = aj, (5.1)
~o0 h2(8)
where a; and a, are constants satisfying 0 < a;,0 < oy, and a; + az < 1.

If S = s is an observed value of S, then values §; = 05(s) and 6y = Gy (s) are

found by solving
ha(0r) =s and hi(6y) =s.

The above notation is used because 01, and 6y are both functions of s.

Thus, if fy is the true value of 8, then A, (6o) < s < ha(b) if and only if
0 =60p(s) < by < Oy = 8u (s) for any observed sample T1,...,Tn. But following
from the definitions of h;(8) and h,(8),

P[hl(eg) <S< hg(go)] =1~ a; — Qg,
s0
P[GL(S) < by < 9(](5)] =1 Q; — Q.
Hence, (61,0y) is a 100(1 — a; — a;)% confidence interval for 6,.
Observe that A;(6) and h,(8) are really not needed. For a given observed value
s of the statistic 5,0, = 6;,(s) and 6y = 8 (s) need to be found. 8y can be found
by solving for 6 in the equation

hi(8)=s
a; = / fs(s;8)ds. (5.2)

-0
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61 can be found by solving for § in the equation

Qg = /°° fs(s;8)ds. (5.3)

ha(6)=s

Ezample 14

Consider again a random sample from an exponential distribution with pdf
8) = ze=/f ]
fx(z;0) = 7€ (0,00) (T)-

I will find a confidence interval for 8 by using the statistic § = 3.7

=1

oy and oy, hy(f) and hy(6) can be found. Because 25/6 ~ x%(2n), it follows that

X;. For given

@ = P[S < hy (8)]

= P[25/6 < 2h,(8)/6)]

which implies
2h1(6)/6 = x5, (2n)

and

ha(8) = 0x2, (2n)/2.

Similarly,
a; = P[S > h,(6))

=1— P[25/6 < 2h,(6)/6)

which implies
2h2(0)/8 = X7 _q, (2n)

and

ha(6) = 6x3_a, (2n)/2.

For observed s = X7, x;, 6y, is such that A, (1) = s; that is,

ha(0r) = 6px3_,, (2n)/2 = s or 6, = 25/x2_4, (2n). Similarly, y = 25/x2, (2n).

22?:1 Fi 22:‘:1 Fi
., ) 2, en) )

So a 100(1 — a; — a3 )% confidence interval for 8 is given by (
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I mentioned at the beginning of this subsection that this method would work
for discrete random variables as well as for continuous random variables. The
only difference is that now the integrals in (5.1) to (5.3) need to be replaced by
summations. Two popular discrete density functions are the Binomial and Poisson.
One may be interested in confidence interval estimates of the parameters in each.

The next two examples consider these two discrete density functions, respectively.

Ezample 15

Xi,..., X, is a random sample of size n from the Bernoulli distribution with pdf

fx(z;p) = pP"(1-p)t® Iio,13 ().

Consider finding a 100(1 — a)% confidence interval for p.
It is known that S = X7, X; has a binomial distribution; that is, P[S =s] =
(’:) p’(1 —p)*=* for s = 0,1,...,n. I will not find explicit expressions for h,(p) and

ha(p) in this example. Suppose S = s, is observed (necessarily an integer). Then

pu and pg, need to be solved for in each of the equations

30

ag =) (:) py(l—pu)**

§==0

and
80 -1

l—a =) (:)Pi(l ~pL)"".

s=0
Ifa =0 +a al00(l —a)% confidence interval for p is given by (pz,pyr). To
actually solve these equations, a computer program to evaluate the binomial distri-
bution is useful. If &; = @y = 0.05,n = 10, and if s = 2 is observed then p;, = 0.037
and py = 0.507. It follows that (0.037, 0.507) is a conservative 90% confidence

interval for p.

FEzample 16

X1,.., X, is a random sample of size n from the Poisson distribution with pdf

e~k u®
f“.(m’#) = '“"_m‘!'/i“'[{(\zl,...} (1}).
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Consider finding a 100(1 — a)% confidence interval for u. It is known that § =
Z;’zl X; has a Poisson distribution with parameter nu. I will again not find ex-
plicit expressions for h;(u) and hy(p) in this example. The CDF of the Pois-
son distribution is related to the CDF of a chi-square distribution by Fx(z;u) =
1 — H[2p;2(z + 1)] (Bain and Engelhardt 1989, p. 227) where Fx(z;p) is the
CDF of the Poisson. Thus, the confidence limits can easily be expressed in terms
of chi-square percentiles. If I denote the CDF of a chi-square distribution with »
degrees-of- freedom by H(z; v), then for an observed value S = s, py and pur need

to be solved for in each of the equations

oy =1—H(2npy;2s + 2)

and
l—ay =1—-H(2npg;2s).

Thus,

2'n'p’U = X%—al (23 + 2)’
and thus

By = Xi_a, (25 +2)/2n.
Similarly,

2npp = xiz (23),

and

/J,L == Xiz (28)/2”.
If @ = a1 + a;, then a 100(1 — @)% confidence interval for p is given by
(b, pv) = (X%, T L, @)/2n, X3, (2T 7, @i +2)/2n) .

5.3 Bootstrap Method

This subsection briefly describes the basis of the bootstrap and presents three
closely related methods of using the bootstrap to find confidence intervals. Only

the mechanics of these methods will be considered and not the theory behind them.
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The bootstrap (Efron 1979, 1981, 1982) is widely viewed as a tool that can be
used to find nonparametric confidence intervals in complex problems. The boot-
strap is a general methodology for measuring the accuracy of an estimator. It is a
computer-based method, which substitutes large amounts of computation in place
of theoretical analysis. The bootstrap can be used to answer questions which are too
complicated for traditional statistical analysis. In an era of declining computational
costs, computer-intensive methods such as the bootstrap are becoming increasingly
useful even for relatively simple problems.

Suppose Xy, ..., X, are independent and identically distributed (iid) random
variables from a population with unknown CDF F, and suppose the goal is to draw
inferences about some parameter 8 of the population. Let § be an estimator of
@ and let F' indicate the empirical probability distribution, the CDF that assigns
mass 1/n to each X;. The bootstrap approximates the sampling distribution of §
under F' by the sampling distribution of § under . This procedure is usually hard
to carry out analytically, and it is often necessary to use the Monte Carlo algorithm
as follows (Efron 1981, 1982):

1. Construct F'.
2. Draw a “bootstrap sample” from ﬁ’,
. iid 2

*
ml,...,mn ~ 3y

and calculate the bootstrap estimate §* = é(m;‘, ey @),

3. Independently repeat step 2 B times (for some large B), obtaining
é;,b = 1,..., B. The CDF of the bootstrap distribution of * at y is approximated
by G(y) = #{@g < y}/B, the number of bootstrap estimates less than or equal to
y divided by the total number of replications.

I will present three different methods of using the bootstrap to set confidence
intervals in order of increasing generality in respect to the characteristics of the
sampling distribution such as bias, skewness, etc. All three methods use percentiles
of G to define the confidence interval. They differ in which percentiles are used.

For a given a between 0 and .5, the simplest method is to define

A A

frow (@) = G Ha), bypla)= Gl - a),

39



usually denoted simply 80w ,0up. Efron’s (1981, 1982) percentile method consists
of taking

8 € [Brow (o), dup ()] (5.4)

as an approximate 100(1 — 2a)% central confidence interval for §. Because a —
Gllrow )and 1—a = G(Byp ), the percentile method interval consists of the central
1 —2a proportion of the bootstrap distribution. Thus this method does not perform
well for biased or skewed sampling distributions.

The bootstrap distribution for the sample median is median unbiased in the
sense that é(m(m)) = .50 (splitting the probability at the sample median T(m), the
middle order statistic). If G(f) # .50 then a bias-correction (Efron 1982) to the

percentile method is called for. To be specific, define the bias-correction constant
20 = 971 (G(6))

where ® is the standard normal CDF. Efron’s (1981, 1982) bias-corrected percentile
method (BC method) consists of taking

6 € [G71(2(220 + 2a)), G (8(220 + 21-a))] (5.5)

as an approximate 100(1 ~ 2a)% central confidence interval for 8. Here z, is the
oth percentile of the standard normal distribution.

- Notice if é(é) = .50, that is if half of the bootstrap distribution of §* is less
than the observed value 6, then z, = 0 and (5.5) reduces to (5.4), the uncorrected
percentile interval. However, even small differences of G’(é) from .50 can make (5.5)
much different from (5.4) as was shown in Efron and Tibsharani’s (1986) law school
example in section 2.

Even though the BC method works well for biased data, it does not perform
well for skewed sampling distributions. For some skewed sample distributions the
BC method only goes about half as far as it should toward achieving the asymmetry
of the exact interval. Thus another constant is needed to help adjust for skewed
distributions. To be specific, define the “acceleration constant”

2, (U7)
(X Uy

1
a= —
6
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where U? is the empirical influence function,

6; is the ith coordinate vector, p° is the vector (1/n,1/n,...,1/n), Flpy, ps, very Pn]
is the weighted empirical distribution I:’[p] probability p; on z;i = 1,...,n, and
0(F[p]) is the bootstrap estimate obtained from using F[p] in the Monte Carlo
algorithm.

Efron’s (1984) bias-corrected percentile acceleration method (BC, method) consists

of taking
6 € [G71(3(2[a))), G (8(2[1 ~ a))], (5.6)
where
zlo] =20 + 1 —Ei:(;:?)za)’ (5.7)

and likewise for z[1 —a], as an approximate 100(1 —2a)% central confidence interval
for 4.

If 2o and a equal zero, then z[a] = 2z, and (5.6) becomes (5.4), the percentile
method. In general zo and a do not equal zero, and formulas (5.6) and (5.7) make
adjustments to the percentile method that are necessary to achieve higher order
accuracy. Hence, this method appears to perform well for most all sampling distri-
butions.

Suppose that a is set to equal 0 in (5.7), so z[a] = 22, + z,. Interval (5.6) with
this definition of z[a] and z[1 — @] becomes (5.5), the BC method. In other words,
BC = BC,, with a = 0. The constant 2o is easier to obtain than the constant a
which is why the BC method might be used.

To summarize this subsection, the progression from the percentile method to
the BC, method is based on a series of increasingly less restrictive assumptions
about the sampling distribution such as no bias or no skewness. Each succes-
sive method requires more computation; first the bootstrap distribution @, then
the bias-correction constant zy, and finally the constant a. However, all of these
computations are algorithmic in character, and can be carried out in a somewhat

automatic fashion.
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6. SUMMARY

In summary, the purpose of this paper was to introduce the concept of an
interval estimate or confidence interval. A point estimator, by itself, does not
provide direct information about accuracy. An interval estimator gives one possible
solution to this problem. The concept involves an interval the endpoints of which are
statistics that include the true value of the parameter between them with a certain
probability. This probability corresponds to the confidence level or significance
level of the interval estimator. Ordinarily, the term confidence interval (or interval
estimate) refers to the observed interval that is computed from data.

Three basic methods for constructing confidence intervals were discussed. The
first, which is useful in certain applications where unknown nuisance parameters are
present, involves the idea of a pivotal quantity. This amounts to finding a random
variable that is a function of the observed random variables and the parameter of
interest, but not of any other unknown parameters. It is also required that the
distribution of the pivotal-quantity be free of any unknown parameters.

The second method, which is referred to as the general or statistical rnetho‘d,
does not require the existence of a pivotal-quantity, but has the disadvantage that it
cannot be used when a nuisance parameter is present. This method can be applied
with any statistic whose distributions can be expressed in terms of the parameter.
The percentiles are functions of the parameter, and the limits of the confidence
interval are obtained by solving equations that involve certain percentiles and the
observed value of the statistic.

The third method involves using the bootstrap. Actually three different meth-
ods were discussed; the percentile, the bias- corrected percentile, and the bias-
corrected percentile acceleration. Each of these methods employ the bootstrap,
however, they differ in that they are based on a series of increasingly less restrictive
assumptions about the sampling distribution. Also each successive method requires
more computation.

Interval estimates obtained by any of the three methods can be interpreted

in terms of the relative frequency with which the true value of the parameter will

42



be included in the interval, which corresponds to the probability that the interval
estimator will contain the true value. Finally, I should mention that even though
the methods discussed in this paper are pefhaps the most common methods, they
are not the only methods. For example, in some instances it may be known that a
parameter in non-negative. Hence, it makes good sense to set the lower limit to be

Z€ero.
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