A CONSULTANT’S GUIDE TO SAMPLE SIZE

Karen A. Summers
May 1990
Stat 570



1.0 Introduction

The determination of sample size is such an important step in the experimental process
that many books and journal articles in many different fields are devoted to the subject. So
many, in fact, that the task of tracking down the best method for some particular problem
becomes a cumbersome chore. The sample size problem is a universal one. No matter what
the field of study, there comes a time when the researcher must ask “How large should
my sample be?” And anyone who has done consulting knows that (too) many times this
is when the researcher first decides to contact a statistician. If the statistician is lucky,
the researcher will have some understanding of power and distribution considerations,
otherwise these need to be explained and determined. Then, when researching sample size
methodology, it becomes apparent early on that many authors have their own method of
notation.

The purpose of this paper is two-fold: (i) to summarize some of the more common,
most used sample size determination methods, and (ii) to describe these methods using
uniform notation whenever possible. In this paper I have provided test statistics, sample
size formulas, power formulas, examples, and/or important references for the following
procedures: (i) one-sample inference about the mean which includes methods for the z-
test, normal approximation of the binomial test on a proportion, t-test, and achievement
of a specified confidence interval width; (ii) the significance of a product moment correla-
tion coefficient, r; (iii) nonparametric one-sample inference about location which includes
methods for the sign test and the Wilcoxon one-sample test; (iv) two-sample inference
about the mean which includes methods for the z-test for both equal and unequal vari-
ances, the normal approximation to the binomial test for equivalence of two proportions,
and the t-test; and (v) the Wilcoxon two-sample test.

1.1 Sample Size and Power

Ideally, whenever statistical tests are done, the investigator would like to be assured
that the null hypothesis is rejected whenever it is false and “accepted” whenever it is
true. While absolute assurance is not possible without sampling all (or nearly all) of the
population, it is possible to find the probability of rejecting the null hypothesis (Guenther,
1965). Rejecting the null hypothesis when it is true is called a Type I error. We will
require that the probability of a Type I error is no larger than a specified value denoted
by a, often called the significance level. Not rejecting a false null hypothesis is called a
Type II error and its probability is denoted by 8. The power of the test, then, is defined
to be the probability of rejecting a false null hypothesis. It is equal to 1 — 8 and will
be denoted by II. Power depends on the sample size, the level of significance «, and the
chosen alternative parameter value.

When sample size is to be determined, power, along with the level of significance,
must be predetermined by the investigator. These values are then used in the sample size
formulas.



2.0 One-Sample Inference About the Mean

Four methods are presented for inference about the population mean p based on one-
sample data: (i) normal test when the population variance o2 is known, (ii) t-test when o?
is unknown, (iii) sample size needed to achieve a specified confidence interval width when
o? is known, and (iv) sample size to achieve a specified confidence interval width when o2
is unknown.

2.1.a Normal Distribution z-Test — ¢? Known

For a variety of experimental and observational studies, it is of interest to test H, :
K = po versus H, : g > p, based on a random sample from a N (u,0?) population (Kupper
and Hafner, 1989). In such situations, one may wish to specify a 100a% significance level
and the power at a chosen alternative value of y in order to determine the necessary sample
size.
Suppose that z,,...,z, is an observed random sample from N(u,o0?) where o2 is
known, and let B
T — o
TV
A size o test of Hy : u < po versus H, : p > o is to reject H, if 2, > 2,_,, where 2, _,
is the 100(1 — a) percentile of the standard normal distribution. The power function for
this test is

H(u)=1—<b(z1-a+‘;°/:/§) =1-8 ,

where ® is the standard normal cumulative distribution function. The sample size required
to achieve a size o test with power 1 — f for an alternative value p* > p,, for a one-tailed

test, is given by
n = [(zl"a ’*‘21__3)0}2 )
Ho — p*

and for a two-tailed test (Hy : = o versus H, : p # po) is

n= [(Zl—a/z +z1-ﬁ)0]2
Mo — p*

(Bain and Engelhardt, 1987).

Example 2.1

A paint company sells a type of house paint that has a drying time of 75 minutes
with a variance of 9 minutes. One of the research scientists has developed a paint additive
which he believes will reduce drying time to 72.5 minutes. It is known that o2 is the
same for the distribution of paint drying time whether it has the additive or not. He
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decides to test the following hypotheses with a significance level of @ = .05 and power
1—8=.90:H, : p =75 minutes versus H, : p < 75 minutes, where u* = 72.5 minutes.
He then uses the following formula to determine the sample size he needs to accomplish
the significance and power he desires:

- _ [(zos + 250)0 * [(65+1.28)3]% 13
T pe —p | 15-1725 ~

He needs to randomly select 13 cans of paint, add the additive, and measure their drying
times.

Example 2.2

Suppose the additive used in Example 2.1 has a peculiar property where if it did not
decrease drying time, it could increase it. With a, 1 — 8, and pu* being the same as in
Example 2.1, he would now want to test H, : u = 75 versus H, : u # 75 and would use
the following formula to determine his sample size:

o (2975 + 200)0]® _ [(1.96 +1.28)3]% 6
N o — W* B 75 —72.5 ~

2.1.b Normal Approximation of Binomial

Often, in experimental situations, we need to determine sample size when the problem
leads to a test of hypothesis about a proportion. Suppose the experiment consists of n
trials which have the following properties: (i) the result of each trial will be classified into
one of two categories (i.e., success and failure), (ii) the probability p of a success will be
the same for each trial, and (iii) each experiment will be independent of all others. Then
the number of successes follows a binomial distribution. Binomial tables can be used quite
easily for most such experiments, but if they are not available or the range of entries is
exceeded, then the following normal approximation may be used.

Define the test statistic

T —np

o np(l—p)

A size o test of H, : p = p, versus H, : p > p, is to reject H, if 2z, > 2,_,, where z, is
the 100(1 — a) percentile of the standard normal distribution. The power function for this

test is
- / 1 l p *
II(p*) . ( > 1-a p()( 10) \/—lpo p I) 1 ﬂ

p*(1-p)
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where z is a standard normal random variable and p* is the alternative value where p* > p,.
The sample size required to achieve a size o test with power 1 — 3 for an alternative value
p* for a one-tailed test is

n > (21—41\/?0(1“‘?0) +z1_,3vp*(l-p*))2

Po—D

(Guenther, 1965). For the two-sided test, replace o with «/2.

Example 2.3

A certain manufacturing process produces 10% defective parts per lot on the average.
An industrial engineer develops a new process which he believes will reduce the percentage
of defectives to 9% per lot. It is important to know if this difference is significant since
start-up costs for the new process are high. The engineer decides to draw a random sample
of parts to inspect for testing the hypothesis Hy : p = .10 versus H, : p < .10 at p* = .09
at a significance level of a = .01. He requires power of 1 — 8 = .95. The sample size he
then needs is

n> 2.994/(.10)(.90) + z.051/(-09)(.91) 2

.10 - .09

~ 13,700

2.2 t-Test — ¢? Unknown

When o? is unknown, one can estimate it using the sample variance, 52, where

8% = (n—1)"" f:(x,. ~X)?

i=1

Let z,,...,z, be an observed random sample from N(u,0?), where 0? is unknown, and
let

b = T —

7 s/\/n

For a one-tailed size o test of H, : u = py versus H, : p > p,, the power to reject H, in
favor of H, when p > u, is

() = P[0 > 675 | 1> o]

where t.7¢ is the 100(1 — ) percentile of the central ¢,_, distribution and where t',‘{ff
has a noncentral ¢,,_, distribution with n — 1 df and noncentrality parameter Vy/nd =
Vn (i — po)/o (Kupper and Hafner, 1989).



Sample size determination can be accomplished using tables for the noncentral ¢ such
as the table on page 535 in Bain and Engelhardt (1987) which is reproduced in Table 1
of the Appendix. This tables gives the sample size required to achieve 1 — 8 for specified
d = |u — po|/o and o for a one-tailed test. The table also gives the approximate n for
two-tailed significance at 2a.

Example 2.4

Returning to the paint drying time problem in Example 2.1, suppose the scientist is
not willing to assume that o® is the same after the additive is added, and therefore, he
decides to use a t-test. In order to calculate d, however, he needs to specify a value for o.
He chooses ¢ = 3. Then

d= (o —p*)/o=(75—-"125)/3 ~ .8

From Table 1 in the Appendix, one finds a sample size of approximately 15 cans of paint is
required for the a = .05 one-tailed test to ensure a power of .90. Similarly, if a two-tailed
test was to be used in Example 2.2, he would need a sample size of 18 cans of paint.

2.3 Determination of ¢ When It Is Not Known

At this point, one might become confused since the t-test for 6® unknown requires a
value for ¢ to obtain the noncentrality parameter used to determine sample size and since
§? cannot be calculated until after the sample is drawn. There are three commonly used
methods for determining 0® when it is unknown: (i) using historical or published results
as in Example 2.4, (ii) using knowledge about the mechanisms of action in the material to
derive a mathematical model for o°, and (iii) using the sample variance S from a pilot
study. In most cases, the calculated n is an estimate, not an exact answer.

2.4 Sample Size to Achieve Specified Confidence Interval Width —
o? Known

Because the length of a confidence interval can be decreased or increased by the size of
the sample, it is reasonable to know how large the sample size must be in order to make the
length of the interval no greater than some specified length L. To meet this requirement
we must have

22, _4/20/y/n <L

which gives the following sample size formula



20'31—01/2 z
> | o imei2

(Guenther, 1965).

Example 2.5

Returning once again to the paint drying time problem in Example 2.1 where o = .05
and o = 3, suppose the scientist wants to determine a 95% confidence interval for the
average drying time for paint containing the additive so that the interval is no greater
than 2 minutes. The minimum sample size required is

> (2_0%_7_2)2 _ (2(3)(21.96)) 35

2.5 Sample Size to Achieve Specified Confidence Interval Width —
0? Unknown

There is an excellent article by S.L. Beal (1989) which contains formulas and tables
for computing n such that

1 — o= P[width of the CI < L and the CT is correct]

3.0 The Significance of a Product Moment Correlation Coefficient, r

Many times, especially in the behavioral sciences, the linear relationship between two
variables is of interest to the researcher. When this is the case, a frequently used statistic
is the Pearson product-moment correlation coefficient, r.

The t-test for the significance of r is given by

r,vn—2

where r, = the sample r, n is the sample size, and ¢ follows a t-distribution having n — 2
degrees of freedom. Solving for r, gives

12
o= 2+(n—-2) °

6
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Cohen provides tables for the sample size required to test both one-tailed and two-tailed
tests at specified o and 1 — 3. To test Hy : r = 0 versus H, : r > O use a for the tabled
a;, and to test Hy, : r = O versus H, : r # 0 use « for the tabled a,. These tables are
reproduced in the Appendix as Table 2 (Cohen, 1977, pp. 101-2).

Example 3.1

An educational psychologist is consulted by the dean responsible for admissions at a
large university with regard to the desirability of supplementing their criterion for admis-
sion by using a personality questionnaire. The plan is to administer the test to a random
sample of entering freshman and determine whether scores on this test (X) correlate with
the freshman year grade point average (Y'). The decision is made that if r = .10, then it is
worth adding to the selection procedure. It is also decided that power of 1 — 8 = .90 and
a significance level of o = .05 are desired. Then using Table 2 with a = a, = .05, r = .10,
and power = .90, the required sample size is 864.

For a good, recent review of the sample size determination problem in simple regression
and correlation, see the paper by Gatsonis and Sampson (1989).

4.0 Nonparametric One-Sample Inference About Location

“Methods based on ranks form a substantial body of statistical techniques that provide
alternatives to the classical parametric methods” (Lehmann, 1975). The Sign Test and
the Wilcoxon one-sample test are presented here.

4.1 Sign Test

An application of the test that a proportion is .50 is the nonparametric sign test. Let
Zy,...,T, constitute a random sample from a population with median . We want to find
the sample size necessary to test the hypothesis Hy, : 7 = 5, versus H, : n > 7, at a
specified significance level « and power 1 — 3. Suppose P{X =n,} = 0.

As our test statistic, we use the quantity S = the number of observations greater than
NMo- Then S is a binomial random variable with P = P{X > n,}. Under H,, P = 1/2.
For specified alternative n* > no, let p* = P{X > no | n = 5*} > 1/2. (One can specify
p* directly.) Applying the results of Section 2.1.b with p =1 /2

=l

(Noether, 1987).



Example 4.1

Steel rods produced by a certain company have a median length of 10 meters when
the process is operating properly. It is suspected that the process is not operating properly
and further that the rods are twice as likely to be greater than 10 meters as they are likely
to be less. The hypothesis H, : n = 10 versus H, : 7 > 10 is to be tested at o = .05 and
1 — = .90 where P(X > 10) = 2/3. The sample size needed then is

Zos +Zoo \° 1.65 +1.28\2
n=| "0 ) =) T8
2(2/3 - 1/2) 1/3

4.2 Wilcoxon One-Sample Test

Given here is Noether’s (1987) method of sample size determination for the Wilcoxon
one-sample test. Another approach can be found in Lehmann (1975).

This procedure is a test of symmetry about a hypothesized population median. We
will test H, : the population is symmetric about 0 versus H, : the population is shifted to
the right (Gibbons, 1985).

Let X,..., X, be a random sample with W = number of (3, j) pairs for which {X; +
X;} is positive where 1 < ¢ < j < n. Then W is the Wilcoxon test statistic for testing
H, :p' = 1/2 versus H, : p' > 1/2, where p' = P{X + X" > 0}, where X and X' are two
independent observations. Power is defined as

N nlp=1/2)+1/2n(n - 1)(p' = 1/2) ., 2
(') = n(n+1)(2n + 1)/24 =3n(p' —1/2)

and the necessary sample size for detecting p' under the alternative hypothesis is given by
"= ( Ziea T 21-p )2
V3(p -1/2)

(Noether, 1987).

Example 4.2

Assume that the company in Example 4.1 is having more problems with their process.
Then under the same conditions and significance criterion so that p' = 2/3 in this problem
also, the sample size required is

( Zos + Zoo )2 (1.65 + 1.28)2
n= = —) ~100
V3(2/3—1/2) 29

8



5.0 Two-Sample Inference About the Mean

Up to this point we have only considered the one-sample problem. We will now look
at the two-sample problem.

5.1 Normal Distribution

Let z,,...,z,, and y1,...,¥,, be two independent random samples of size n; = n, =
n with distributions N(p,,02) and N(u,,0?) respectively.
5.1.a z-Test — Variances Known and Equal — o2 = 0? = o?

A size o test of H, : p, — pu, = 0 versus H, : p, — p, > 0 is to reject if

Vn(X-Y)
V2o

is greater than z,_,. The power of this test at alternative p, —y, =d > 0is

2y =

T(d) =1 - @ (zl._a + —\/-‘23-;)

and the sample size necessary to attain a specified significance level o and power 1 — § is

- [(zl_a +zl-ﬂ)\/§0]2

d

for a one-tailed test. For a two-tailed test of Hy : p, — p, = O versus H, : yu, — u, # 0,
replace a with a/2.
5.1.b z-Test — Variances Known but Unequal — o2 # o2

A size « test of Hy : p, — p, = 0 versus H, : p, — p, > 0 is to reject if

Vn(X-Y)

is greater than z,_,. The power of this test at alternative y, —p, =d >0 is

2 =

d
H(d)zl_é Zlea +
\/ o2 +02 [\/n
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and

2
(21—« +z1-p)\/0§ + o2

n= d

is the sample size necessary for a specified significance level a and power 1 — 3 for a one-
tailed test. Replace o with /2 to determine the sample size for a two-tailed test (Snedecor
and Cochran, 1980).

Example 5.1

Look at the paint additive problem again in Example 2.1. The lab has developed
another additive, which is much more expensive to use, but is believed to be able to reduce
drying time to 72. This is not a big difference so they decide to set power (1 — g) at .95
and the significance level (o) at .05 to test Hy : p, — p, = 0 versus H, : u, —u, # 0 to
see if there is a real difference. The sample size they need at d = 0.5 is

2 2

(2075 + 2.05)V23 (1.96 -+ 1.65)/23

n= - ~ 938
72.5 -T2 5

They will need to test 938 cans of paint with each additive to detect a .5 difference between

the averages with power equal to .95.

5.1.c Graphical z-Test Method

The nomogram, Figure 1 in the Appendix, is appropriate for approximating the sample
size for a two-sample comparison of a continuous measurement with the same number of
subjects in each group. It makes use of the standardized difference which is equal to
the hypothesized true difference (usually the smallest relevant difference) divided by the
estimated standard deviation. The only restriction is the common requirement that the
variable that is being measured is roughly normally distributed.

The nomogram gives the relation between the standardized difference (‘—‘—‘;—"-”— , the

total study size (2n), the power (1 — ), and the level of significance (c/2) for a two-tailed
test. Given the two-tailed significance level (6% or 1%), by joining with a straight line the
specific values for two of the variables, the required value for the other variable can easily
be read off the third scale. By using the nomogram it is both simple and quick to assess
the effect on the power of varying the sample size, the effect on the required sample size
of changing the difference of importance, and so on.

An estimate of the standard deviation should usually be available, either from pre-
vious studies or from a pilot study. Note the nomogram is not strictly appropriate for
retrospective calculations. Although it will be reasonably close for samples larger than
100, for smaller samples it will tend to over-estimate the power (Altman, 1982).
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Example 5.2

Return again to the paint additive problem in Example 5.1. For a two-tailed test,
they want Hy : p; — yu, = 0 versus H, : uy — pu, # 0. The standardized difference is
(72.5 — 72)/3 = .17. They will test at /2 = .05 and 1 — 8 = .95. Then using the
nomogram 2n = 1800 cans of paint so they will need to add each of the additives to 900
cans.

5.1.d Normal Approximation of Binomial

Often, especially in the field of epidemiology, the investigator will want to test the
proportion of successes of two binomial distributions. For example, if a new drug is being
tested, the success rate, p,, of the control group will be tested against the success rate,
Pz, of the treatment group. Let X,..., X, and Y;,...,Y,, be two independent samples
distributed as BIN(n,,p; ) and BIN(n,, p,) respectively where n, does not necessarily equal
n,. Let

lpr — p2| - 1/2 (,}—1 + ;1—)

\/px(l—m) + pa(l—p2)

ni ng
Then an approximate size « test is to reject Hy : p, = p, versus H, : p, > p, is to reject
H, if z, > z,_, with power

2y —

oy B VR (=) + P (1 —p:) — (. —p1)V
s =) @( \/Pl(l"P1)+P2(1“‘pz) )

(Fleiss, 1981).
The minimum sample size required for each sample to achieve a size « test with power
1 — 3 for a one-tailed test is

o = [%-—a + 215

Py— r [p1(1—p1) + P2 (1~ p2)]

(Snedecor and Cochran, 1980).
In more recent research it has been found that a better approximation for sample size
can be found by incorporating the continuity correction in the test statistic. After n' is

computed, n is found using
2
4
1+4/1+ ——
n ]Pz - P1l

11

n =

NS

(Fleiss, 1981, pp. 39-42).



Example 5.3

A new drug has been developed for some common dreadful disease. It is expensive
and causes very unpleasant side effects. The existing drug has a success rate of .60, is less
expensive and does not have any side effects. Since failure means the patient dies, it is
decided that if the new drug causes even a 5% increase in the success rate, it will be highly
valuable in the treatment of the disease regardless of the cost. To test the hypothesis of
H, : p, = p, versus H, : p; < p, with p, = .60, p, = .65, « = .01, and 1 — § = .99,
the minimum sample size for the control group (those who get the existing drug) and the
treatment group (those who get the new drug) is

2.33 +2.33

n' = Z oo 1 290
.05

65 — .60 } [(-60(.40) + .65(.35)] = [

2
} (.4675) ~ 4060

then employing the continuity correction

2
n=2001, 14 : ~ 4100
T4 4060|.65 — .60| |

5.2 t-Test — o0 Unknown and Equal

Let X;,...,X,, and ¥;,...,Y,, be random samples distributed as N(p,,0%) and
N{(u,,0?%) respectively with n; = n, = n. Define

ni

§2=(n-1)"") (X - X)

§=1
and .
S =(n-1)" Y (%) .
i=1
Then the pooled variance is defined as
Sy = (87 + 57)/2

For a one-tailed size « test of H, : p, = p, versus H, : p, > u,, the power to reject H,
in favor of H, when p, — p, has a specified positive value o0 is

n 1/3 —a
7(p) =P {t'g(ﬁ)l) °s t;(n_l) | (By — 1) = 00 > 0} ,

where -
v = (7 - X)/8, (2/n)

2{n~1)
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has a noncentral ¢ distribution with 2(rn — 1) df and noncentrality parameter (n/2)!/24.
Table 1 in the Appendix can now be used to find the sample size required to achieve
1 — p for specified d' = |y, — p,|/o (Kupper and Hafner, 1989).

Example 5.3

Look again at the paint drying time problem in Example 2.4. A second additive has
now been developed which the scientist believes will reduce drying time by another two
and a half minutes. He wants to test it against the first additive. He chooses ¢ = 3 and
lets d = (72.5 — 70)/3 = .8, 2a = .05, and 1 — 8 = .95. From Table 1 he finds he needs a
sample size of 38 for each additive. The nomogram, introduced in section 5.1.c, may also
be used and gives 2n = 80.

6.0 Wilcoxon Two-Sample Test

Let X,,...,X,, and Y3,...,Y, be two independent random samples. Define the test
statistic as U = the number of (7,7) pairs such that {Y; > X;},¢=1,...,m;j=1,...,n.
We want to test H, : the 2 samples come from the same population versus H, : the
Y-observations tend to be larger than the X-observations. Let p = P{Y > X} and
N = m + n. The alternative can now be stated as H, : p' > 1 /2.

Setting m = CN, we find

12(1 — C)N*(p' — 1/2)
N+1

n(p') =

and, approximately,
N = (21-a +21-5)°
12C(1 - C)(p — 1/2)?
The combined sample size m and n may now be found using the fact that m = CN
(Noether, 1987).

Collings and Hamilton (1988) provide a bootstrap method for using observed data (or
pilot data) to approximate power for this test.

7.0 Closing Remarks

This paper has attempted to provide its readers with a quick reference to a variety
of methods for determining sample size. Many of these methods have been cited directly
from their authors with minor notational changes.

Each sample size method presented requires that stated independence and/or dis-
tributional properties be met in order to attain reliable and accurate sample sizes. For
example, one should not use the t-test formula to find the necessary sample size for ex-
ponential data. However, methods, such as the bootstrap methods described by Collings
and Hamilton (1988) that do not require distributional assumptions, do exist.
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Specialized software packages are available for power and/or sample size calculation.
Goldstein (1989) reviews several of these packages.

The reader may also wish to consult various issues of the Current Index to Statistics
(Burdick) for which the 1988 issue includes a list of 48 additional articles on sample size.
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Table 1

Sample Size for t Test

Sample size n to achieve power | — fi for J = it = 1] @ in one-sample case and
n=ny=u, for ' =, —p,j0 in two-sample case, for onc-sided test at
significance level a. These are approximate n for two-sided test at significance
level 2a.

Onc-sample test Two-sample test

"
{da) T

0.50 10.60 {0.70 | 0.80 iO.‘)O 095 1099 40.50 | 0.60 lO.?O 0.80 {0.90 | 0.95 { 0.9

0.005 1 0.1 { 669 ] 805 | 966 | 1173 }!493 1785 12403 1327 11602 | 1922 | 2337 | 2977 | 3567 | 4806 {0.1
0.01) 10.21169 1204 [249 1 296 | 377 | 450 | GOS { 333§ 403 | 484 | 588 1 749 894 | 1206 (0.2
4| 42| 531 64 777 97| NS 1543 87 101} 124 150 | 189) 226 | 304 {04
06 22 26 | 31 6| 45 53 71 37| 44 551 65 85| 100 138106
08| 4] 16| 19] 221 M 21 4 231 270 321 39| 49) 56} 8510.8
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Table 2

a, = ,01 (02 = ,02)

Power .10 »20 .30 Lo .50 .60 .70 .80

.90
.25 273 68 31 18 12 9 7 5 4
.50 sko 134 59 31 20 14 10 7 5
.60 663 164 72 39 2L 16 11 8 6

2/3 757 187 81 by 28 18 13 9 6
.70 809 200 87 L8 29 19 13 9 6
.75 897 221 96 53 32 21 4 10 7
.80 998 246 107 58 36 23 16 1 7
.85 1126 277 120 65 Lo 26 17 12 8
.90 1296 319 138 75 43 29 20 13 8
.95 1585 389 168 9 55 35 23 16 10
«99 2184 529 228 123 74 47 31 20 13

ay = .05 (a, = ,10)
[ 4

Power .10 .20 .30 A0 50 L6070 B0 .90
.25 99 24 12 8 6 L & 3 3
.50 277 69 30 17 n 8 13 5 L
.60 368 92 Lo 22 14 10 7 5 4
2/3 430 107 47 26 16 1 8 3 4
.70 470 117 51 28 18 12 8 3 I
.75 537 133 58 32 20 13 9 7 5
.80 618 153 68 37 22 15 10 7 5
.85 727 180 78 43 26 17 12 8 6
.90 864 213 93 50 31 20 13 9 6
.95 1105 272 118 6k 39 25 16 11 7
.99 1585 189 168 91 55 35 23 15 10

a‘ = 10 (.2 s 020)

Power .10 .20 -30 .1}0 050 060 070 .80 .90
.25 39 1 6 L 3 3 3 3 3
.50 165 L2 19 1 7 5 L 3 3
.60 236 59 27 15 10 7 5 &4 3
2/3 293 73 33 18 12 8 3 4 4
.70 326 81 36 20 13 9 3 5 4
.75 383 95 42 23 14 10 7 5 b
.80 450 12 L9 27 17 11 8 é A
.85 836 133 58 32 19 13 9 6 4
.90 5658 162 7 39 24 16 1" 7 5
.95 86k 213 93 50 31 20 13 9 I3
.99 1296 319 138 75 Ls 29 19 13 8
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Table 2 (continued)

a, = 01 (a‘ = ,005)
Powcr .‘0 020 -30 .1{0 050 .60 .70 .80 .90
.25 32 90 Lo 23 15 1 8 6 5
.50 662 164 71 39 2k 16 12 8 6
.60 797 197 86 47 29 19 13 9 7
2/3 901 222 96 53 32 21 15 10 7
.70 957 236 102 56 34 23 is 11 7
75 1052 259 112 61 37 25 17 11 8
.80 1163 286 124 67 L1 27 18 12 8
.85 1299 320 138 75 45 30 20 13 9
.90 1480 364 157 85 51 34 22 15 9
.95 1790 Lo 190 102 62 4o 26 17 1
«99 2390 587 253 136 82 52 34 23 13
a, = .05 (a; = ,025)
4
Power .10 «20 .30 .I;o 050 060 .70 080 .9’0
25 166 L2 20 12 8 6 5 L 3
.50 384 95 42 24 15 10 7 6 L
+60 489 121 £3 29 18 12 Q9 (3 [
2/3 570 141 62 3% 21 14 10 7 5
.70 616 152 66 37 23 18 10 7 5
.75 692 171 74 41 25 17 11 8 3
.80 783 193 84 Lg 28 18 12 9 6
.85 895 221 96 52 32 21 14 10 6
+90 1046 258 112 61 37 24 14 11 7
«95 1308 322 139 75 48 30 19 13 8
«99 1828 &49 154 104 63 Lo 27 18 11
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Standardized difference

1:2 ~

Figure 1

SIG
LEVEL

20

- 075
- 0-70
- 065
- 0-60
- 055
- 0-50
- 045
= 040
- 0:35
- 0:30
- 025
- 020
- 015

- 0410

-~ 0:05
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