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INTRODUCTION

The Postal Rate Commission (PRC) is, in part, concerned with modeling data derived
from various segments of the United States Postal Service (USPS). Certain attributes of the
model (e.g.the regression coefficients) are used in other functional forms to establish a cost
analysis. The cost analysis is used by the PRC to help determine postal rates. From one of

- the USPS segments, data pertaining to Load Time Variability (LTV) has been collected on
each of three types of delivery gites: Single Delivery Residential (SDR), Business and Mixed '
(BAM), and Multiple Delivery Residental (MDR). Load Time is defined as: “The time spent
at delivery sites actually making deliveries, including incidental time for customer contacts,
special services, and collecﬁons from de_livery boxes. For cost analysis, load time is regarded
as two distinct components: elementai load time and coverage-related load time.” (PRC Doc)
Elemental load time varies directly with the number of pieces of mail delivered to delivery
points, and can be thought of as the sensitivity of load time to increases in volume at a
stop that is-already accessed or “covered”. It is desired o derive a sensible regression model
for this component of Load Time. Traditionally, this was a model that poss;sssed a large
adjusted r-squared statistic (RZ).

In this study, R? is obtained through a linear regression analysis of data recorded in
the LTV study, and parameter estimation is an important consideration in building the
regression model. After the parameter estimates have been found, they will be used by the
PRC to calculate elasticities. FElasticities are functions of the model, and the coeflicients

derived from the model, and are sensitive to changes in the coefficients, this implies that



thé individual contribution (;f each regression cﬁefﬁcient is important. It is important to
note that these data have been previously analyzed by four independent parties external
to the PRC, referred to as “witnesses”, and each witness proposed a model to the PRC. A
considerable effort has been spent in an attempt to justify which model should be used, and
subsequently, which coefficients should be retained in that model. The model’s B2 statistic
is the basic criterion for a Iﬁodel b-eing considered “good”. He-nce, one model is better
than another if it possesses a l_é,rger R? than a competing model. Model assumptions and
desirable characteristics associated with a “good” regression model have been ignored by
the PRC witnesses. It is quite possible a better model exists if certain diagnostics checking

model assumptions, and other important considerations are taken into account.

REGRESSION MODELS: NOTATION AND THEORY

A regression model can be expressed, in matrix notation, as
&
Y= X3.

Y is an n x 1 vector of responses (dependent variables), X ifs an n X p matrix of covariates
(indepen_dent variables), § is a p X 1 vector of regression coeflicients (parameters); and ¢
is an n x 1 vector of random error terms which accounts for unexplained variation in the
model. It is assumed €;~(0,0%), where the value of o2 is unknown. The expected value of Y
(E[Y]) is equal to X3. If y; is independent of y; (for i # j), then the covariance between y;
and y; (Cov(y;,y;;)) is equ;Ll to zero. This implies the Var(Y) = Var(¢) = o1, The -goal of

this regression analysis is fo obtain an estimate for the unknown parameter vector #. The



regression coefficients (the individual components of 3) wi.ll be estimated by a method called
least squares regression of Y on X. |

In the method of least squares regression, b denotes the estimate of j3, i.e., the p x 1
vector of estimated coefficients of X that is derived as the least squares solution to the normal
e(iuations. That is, b = (X’X)™! X'Y is the solution to the normal equations: X'Xb =
X'Y. In this setting, X is chosen to have full column rank which implies the columns of X
are linearly independent (implying the existence of (X'X)~%).. Since (X'X)~1 exists, b is
the unique solution to the normal equations. Once b has been determined, the-ﬁtted model
can be written as: ¥'= Xb. It is known that E[Y] = E[Xb] = X8, implying that Y is an
unbiased estima.tt)l; of the expected value of Y. Also, Var(Y) = Var(X‘b) = 2X(X'X)"1X".
Th?: distribution of ¥ can be comﬁactly expr'esséd as Y ~ (Xb, o?2X(X'X)"1X’). After the
fitted model has been obtained, by the method of least squares, a measure of gooduess of fit

can be determined.
The R? statistic is one measure of goodness of fit of a regression model to the data. The

mathematical formula for B2 can be expressed as -

g2 _q_ (n—1)SSE

« =1 pssk P°"

where n = number of observaiions, p = the nqmber of regression coefficients, and SSFE
and SSR are the sums of squares for error and regression which can be obtained through a |
-partitioning of SST. Wherg SST=Y'Y. SST is partitioned into two pieces, one belonging
to the column space of X and the other belonging to the null space of X’. This can be

writien as



Y'Y = YYHY + Y/(I-H)Y.

H is a symmetric and idempotent matrix (H = H' = H?) and is called a perpendicular
projection operator (ppo). H projects a vector (in this case Y) onto the column space of X

along the null space of X’. H can be expressed as
CH= X(X'X)1X.

' SSR, the sum of squares due to regression, is equal to Y'HY. SSE, the sum of squares due
to error, is equal to Y/(I-H)Y. A perfect fit of the model to the data results in R2 = 1, and
implies the fitted model does not contain any error (SSE=0). R. =1 is an idealized value
(not one that is likely to be observed in practice). The closer R? is to one, the better the
fit. However, no matter how good the fit is, certain assﬁmptions are made when a regression

model is fit to the data.

" MODEL ASSUMPTIONS AND DIAGNOSTICS

Two basic assumptions in this regression analysis are: 1) the data have been recorded
without error (at least negligible error), and 2) the n components of € are independent and
identically distributed (iid) as normal random variables with mean zero (,u:Oj and constant
variaﬁce (67 = o7 for all i,j). These data have been recorded by someone other than the
person doing the regression a,nal);sis. Therefore, the person doing the regression analysis
should question the validity of the first assumption. A non-modeling error occurs if the first

assumption has been violated, and may lead to the fitting of a useless model. The model

could be useless in that it would not be explaining a phenomenon the analyst thought it
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-.h,-ar?, and Var(e;) depends on the location of X;j in the regressor space.
The studentized residuals are more helpful in checking the second assumption since they

behave more like the ¢;. Denote the ith studentized residual by #;. Then,

€;

b= s(1 — h;)1/2

where s denotes the root mean square error (VM SE). An approximation for the expected

value of ith order statistic is given by

 (i—0.375)
4= (1025

A Quantile-Quantile plot (Q-Q plot) of ¢; vs. the expected value of the ith order statistics
should show a straight line with a slope of approximately one, and would be evidence that the
normality assumption has not been violated. A plot of t; vs ; should show a random scatter
of points about the zero horizontal line. As a note, there are numerous methods (definitely
more rigorous) available for checking model assumptions, but the above mentioned meth-ods
were used for their simplicity. Besides checking model assumptions, it i1s important to address
the problem of multicollinearity.

Multicollinearity is an important consideration since the individual contribution of each
regressor variable is of interest. In the presence of multicollinearity, the individual effect
of a regressor variable can be masked by the effects of one or more of the other regressor

variables in the model. The regressor variables can be thought of as independent varjables,



was explaining or wanted it to help explaiﬁ. I suggest (prior to fitting the model) that some
type of data chécking be conducted so that one may feel reasonably conﬁden£ that the first
assumption has not been violated. Preliminary plotting of the data (such as histograms of
the regression _Va.riables) may call attention to unusual or suspect observations. If some data
points appear to be recorded in error, the analyst should bring this to the attention of the
experts in the field. Data points should not be excluded from the data set unless there is
a good reason for doing so. Ex.treme observations are not necessarily the result of ervors in
recprding tile data, they may simply represent rare observations. For example, suppose Z
~N{0,1), then P(Z> 2.0)=0.0275. If = =2.0 is observed, this does not imply that z =2.0 is
an error, this simply means it 1s an unusual observation. However, if z =20 is observed we
might be more inclined to think this value of Z is an error since the probability of observing
a value this extreme or more extreme is zero to 88 decimal places. In any case, the existence
of extreme observations should prompt further investigation into the nature of the anomaly.
In order to check the validity of the sefond assumption, the fitted model is required.
Again, the fitted model is ¥ =Xb. In the regression setting, the residual vector (e =
Y —Y) is defined as the difference between the observed Y aﬁd the fitted Y. ‘It can be written
as e = (I-FH)Y, and e~ SN(0,(I-H)o?). That is, e has a singular normal distribution. This
is different than the distribution of e (which is normally distributed). The ¢th residual is
defined by e; = y; — §;, and e; ~ SN(0,(1-k:)a?), k; denotes the ith diagonal element of H
and 0 < h; £ 1. Although we can not observe ¢ we can observe the residual vector ‘(e), and

will use it to check the second assumption. However, the e;’s are not iid since Cov(e;e;) =



but in a certain sense there may be linear dependencies among the regressor variables.
When the regressor variables are not truly independent of each other, then collinearity (or
multicollinearity when more than tw6 variables are involved) is said to exist among the
regressor variables. The problem of multicollinearity among the regressor variables can be
addressed by inspection of the Variance Inflation Factor (VIFj associated with each term.
The VIF of the sth variable ((VIF);) is related to the correlation that exists between that

tth variable and the remaining variables in the model.

1
(1 —rd)

(VIF);= IS(VIF),'<OO

where r} denotes the squared multiple correlation {(coefficient of multiple determination)
between the zth regressor variable and all othér regressor variables. The optimal size for
 a VIF is one. A VIF equal to one for the ith predictor implies the #th regressor variable
is uncorellated with the .rema,ining regressor variables in the médel. As a rule of thumb, a
variable with a VIF over 10 is considered bad, and should be &ropped from the model or
an alternative to the method of least squares should be considered. A VIF greater than 10
implies the coeflicient of multiple determination of the regressioﬁ produced by regressing the
¢th regressor variable againest the other regressor variabies exceeds 90 percent. A large VIF
for the regressor variable #; implies the adccura-cy of the estimate b; is compromised. Since
the goal of building these reg-ression models is to use them for parameter estimation, it is

very imporfant to diagnose multicollinearity between the regressor variables.

DIAGNOSTICS ON PREVIQUSLY PROPOSED MODELS




I will perform diagnostics on the models selected as the best linear models proposed to
the PRC by t.he PRC witnesses. As a note, the response variable for each model is DTSUM.

For the BAM model, 20 regressor variables have been used, and R? is réported as 0.814.
Diagnostics of the model show that 8 variables have VIF’s over 10; PDS2 and LDPDS have
VIF’s over 11000. Since a VIF‘ of 10000 for the sth variable implies r? is .9999, there is an
extremely serious collinearity problem associated with these two variables. In all, 40 percent
of the estimated coefficients are unreliable as judged by their VIF’s. CT1 has a p-value of
0759, and FVDC has a p-value of .0839 this implies that these two variables are not very
helpful as explanatory variables. The variable FVDC is not significant and has a VIF is over
10. Page 21 has a list of the model variables, VIF’s and p-values. The Q-Q plot given on
page 22 exhibits an s-shape suggesting that the normality assumption is questionable.

For the SDR model, 26 regressor variables have been used, and R? is reported as 0.352.
6 terms have VIF’s over 10. The largest VIF is 159.2 (associated with AVDC), and the
smallest VIF is 10.4 (associated with VC2). Hence, gollinearity is a problem in 23 percent of
the regression variables. The two largest p-values are reported as .0623 from variable FVDC
(associated VIF of 19.5), and .0139 from variable VCPDS (associated VIF of 8.4). 22 of
the variables ha,vé very small p-values (reported as .0001). Pagg 25 has a list of the model
variables, VIF’s and p-values. Although the collinearity problem associated with the SDR
data set is the least severe among the models, the R? statistic is the smallest in magnitude.
An R? this small im_plies the SDR model does the worst job of explaining the variation in

Y. The Q-Q plot, presented on page 26, shows the presence of a heavily-tailed distribution.



Hence, the normality assumption is questionable. '

For the MDR, modell, 2_4.regressor- variables have been used, and R? is reported as 0.916.
Page 23 has a list of the model variables, VIF’s and p-values. 16 of the variables have VIF’s
over 10. The largest VIF is 97.3 (from LADD).. Collinearity is a problem witﬁ 66% of the
variables, this implies the estimated coefficients Are extremely unreliable. The two largest
p-values are 0.0953 (from LADD) and 0.0844 (from VCPDS). Again, we find a variable
(LADD) that is insignificant and has a large VIF. The Q-Q plot (page 24) shows the second
assumption is probably violated. |

In each of the Pi'opose'd models, collinearity is present in such magnitude that it’s presence
can’t be ignored. pages 21, 23 and 25 give the model variables, p-values and VIF’; associated

with each of the previously mentioned models.

NEW MODFELS FOR LOADTIME DATA

I have attempted to improve on past modeling endeavors made by PRC witnesses. An
improved model will retain a high RE statistic, provide reasonable coefficients, not grossly
violate model assumptions, and possess other qualities compatible with a good linear model
to bé used for estimation purposes. I will present a general overveiw of my model building
procedure that was used for all three data sets. Deta;ils of my model building procedure will
be presented using the BAM data set as an example.

Each of the three data sets contains a large number of potential regressor variables. .There
are p” regression variables generated for each delivery site which form the pool of Tegressor

variables. For the BAM, MDR and SDR delivery sites, p* = 226, 239, and 182 respectively.
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Due to a small number of observations (usually zero) and other considerations, the set of
regressor variables, although similiar, is unique for each delivery set. Since I'm working with
such a large parameter set, it will be necessary to trim some of the less important variables
from each data set.

A sequential model building procedure will be used to reduce the number of potential
regressor variables from each daté. set. There are three basic sequential model building
procedures: 1) forward selection, 2) backward selection, and 3) stepwise selection. With
the forward selection model building procedure, the model starts out empty and variables
are added to the model based on the significance of their respective partial F statistics.
Once a variable enters the model, it remains in the model through out the model buﬂdiﬁg
procedure. With the backward model buildin‘g. procedure, all regression variables are fit
to the model, and then variables are deleted based on the insignificance of their respective
partial I statistics. Once a variable leaves the model, it never re-enters the model. With
the stepwise model building procedure, Ya.ria.ble_s may enter, exit, re-enter, and re-exit the
model in a series of steps. Again, the significance of partial F statistics will determine
which variables stay or are deleted from the model. I. have used the stepwise model building
procedure and will elaborate on it.

The stepwise procedure (PROC STEPWISE) available in Sta.tistical Analysis Systems(c)
(SAS) will be employed, as an éxploratory tool, to obtain a preliminary subset of Legressor
variables, PROC STEPWISE is a sequential model bli]:ildil'lg procedure. Typically, the model

starts out empty, and then variables are added to or deleted from the model through a series
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of steps. In the first step of PROC STEPWISE, a regression model is fit for each of the p*
regressor variables. A'set of partial F statistics (F?, i=1,..,p%) is calculated. The set contains

FT for each X;.

«_ MSR(Xy) . .
Fl,' = M E(X‘_))_?'—la“".lp

The variable with the largest F? is a candidate for addition to the model, This variable must
be significant at some predetermined alpha level. Tn SAS this is called the significance level
entry (SLE). The default SLE value is 0.15, but it can be changed (I did change the default
values and will explain more about this later). A variable will not enter the model unless it
meets. the SLE criterion.

At the second step, a new set of partial F sta;tistics (.F;’-** i#1) is calculated. This set is

different than the original set of partial F' statistics.

b MSEX\X)
= WSEX, x,) T

The numerator of F;* is the mean square due to regressing X; given thé model already
contains X;. The demoninator of Fr* is the mean square error of the model confaining
X; and Xj;. Again, the variable with the la,rg(;st F7* is a candidate for addition to the
model, and it must meet SLE criterion. After the second variable is added, the first added
variable is rechecked for significance based on a model containing two terms.. A similiar Fr
is calulated, where X; takes the place of X;. The first added varia,blel remains in the model if
a second significance level is met, and in SAS this is called th; éignifcance level stay (SLS).
The default SLS value is 0.15. |

In each successive step, the variable with the largest partial F statistic, given the model
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already contains those terms from thg previoué step,.is added to the model. Each added
variable must meet SLE criterion, and all variables from the previous step must meet SLS
criterion. It 1s important to note that variables continually enter and exit the model based on
the significance of their respective partial F statistics. These partial F statistics are derived
as a ratio of two mean squared values. The observed value of the partial F statistic of a
particular variable changes between steps. Hence, the significan;e of a particular variable
will, almost surely, change between steps. The exchange procedure will terminate when no
other variables can enter or exit the model based on the SLE and SLS criterion. .

After PROC STEPWISE has run, a rather large file (lis output file) exists containing
information pertinent to each step in.the procedure. A list of assécia.ted model variables, as
well as some sumr-na,ry statistics, are generated for each step. A_t.the end of the .lis output
file is a short summary for each step in the procedure. Here we find the variable that has
entered the model, and the variable that has exited the model with respect to each step.

Two other important pieces of information are given for each :step: the degress of freedom

(d.f.), and Mallow’s C,, statistic (C,) where

(s =) (n - p)

Cop=p+

Here, p=the number of model parameters with respect to the particular step, n=number of

? = mean square error based on the p terms in the model, and 42 is equal

observations, s
to the overall mean square error which is calculated based on the complete set of terms
available to PROC STEPWISE. C, = p implies one of two things: 1) p = n or 2) s2=42.

The first implies a parameter estimate has been found for each of the n observations (a silly
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thing to have). The second implies ajl the er;"or inY is variance (a good thing to have).
Cp can be used as a criterion for selecting one model over another. A model thai does not
contain estimated bias will be one that has C, = p (Myers 1986). Since p is an integer and C,
probably is not we must look at those models where Cp is approximately equal to p. Since
p = d.f.+1, the variables associated with the step where Cyp approximately equal to d.f. + 1
will be used as the suggested subset with respect to the stepwise procedure. The suggested
subset of regre;:ssor variables will be used in the regression procedure available in SAS (PROC
REG), and the model derived from PROC REG will be subjected to a diagnostic technique
which further reduces the number of regressor variables. The goal is to find a subset of
regressor variables that are significant, and multicollinearity a,nﬁong the regressor variables
is not an obvious problem.. The p-values of each regressor variable are included as part of
the usual .lis output file, and will be used to establish the significance of the variables. The
problem of multicollinearity will be handled through an inspection of VIF’s. The VIF’s can
be made available to the analyst through PROC REC.

The VIF’SI are included as part of the .lis output file by inserting “VIF” at the end of the
model statement in PROC REG. All variables that are associated with large VIF’s should
be deleted from the model or perhaps an alterga,tive to least squares should be considered
(Myers 1986). I will consider variable deletion as possible soluti(;n to the collinearity prob-
lem. The term with the largest VIF should be deleted first, and then PROC REG is re-run .
The .lis output file is re-examined, the variable with the largest VIF is removed, and PROC

REG is re-run. This produces a new type of “Backwa.rd” model building procedure (new
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in that it is very much different tilan the traditional backward model selection procedure).
However, the deletion of one variable will, in general, affect the VIF of another variable or
variables, Careful consideration is needed in determining which.va,ria;bles should be deleted
based on inspection of VIFs. When comparing VIF’s, variables with the largest VIF’s should
be compared to other terms in the model. Deleting a susbect term in the model will probably
lower the VIF’s for some of the other variables, and it can aﬂ'e_pt their respective significance
levels as well. I suggest a careful analysis which involveg looking for related terms with high
VIF’s, and deleting the highest order term first. Then, through a combination of significance
at the 0.05 level and inspection of VIF’s, other variables are deleted. The final result is a
model where all terms are significant at the 0.05 level; and collinearity between the regressor
variables is not an obvious problem. Hence, this should be a good model for estimation pur-
poses. Further diagnostics of the model will be provided with a Q_—Q plot (using studentized
residuals), and a plot of ¢; vs ;.

If the Q-Q plot is approximately linear with a slope of of one, and no obviou.s pattern is
present in the plot of ¢; vs §; tileﬁ it is reasonablé to assﬁme the: second assumption has not
been violated. However, linear regression is sensitive, in a detrimental way, to the presence
of outliers. If this assumption appears to be violated, due to the presence of a few extreme
observa,tions,. a reweighted least squares approach might be attempted. The reweighted least
squares may produce a more robust model. [t has been suggested that some data points
appear to have been recorded in error due to unusally high recording times so that variable

deletion might be a reasonable solution. If a reweighted least squares approach is used,
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another Q-Q plot will be generated to check the normality assumption. To this end, a parsi-
monious model may be found such that: 1) the estimated regression coefficients are sensible
and significant, 2) collinearity among the regressor variables is not an evident problem, and -

3) model assumptions are not grossly violated. Hopefully, this model also exhibits a rela-

tively high R2.

AN EXAMPLE: MODELLING THE BAM DATA

The BAM data set consists of 1442 observations recorded on each of sixteen variables.
- For the ;:egression analysis, three variables form the response variable DTSUM (defined ear-
lier) and seven form the original explanatory variables (two of which are qualitative). The
quantitative explanatory variables are: accountables delivered (AD), letters delivered (LD),
flats delivered (FD), parcels delivered (PD), and volume coHefzted (VC). Product terms for -
LD, FD, and VC have been constructed, as well as, dummy variables for each of the terms
that make up DTSUM. The two qualitative variables are for receptacle and container code
types. Receptacle type has eleven categc;ries, and container code has six categories.

It has been suggested fhat some components of load time ma,y. have been recorded in
error, as signified by unusually high recording times; this point was referred to the PRC.
Although the recorded values for some of the data points appear questionable, I, personally,
could not disqualify the assumption that the data were recorded .without error. A regression
model will be fit to those observations available for analysis.

To use the qualitative variables in a fegression analysis, a quantitative dummy variable

is generated for each of the receptacle and container code types. Product and interaction
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terms are formed betwéen the “new” and the original quantitative variables. A series of data
manipulation steps in SAS provides a means for building the pool of regression variable.
The complete pool of regression variables actué.lly consists of 226 variables, For the most
part, the data will remain as recorded. However, due to a small number of observations in
receptacles 6 and 7 (MRG and MRT), their observations have .been dumped into receptactle
il (MRI1). MR11 is an ;fother” category, presuma.bl;lz used when a receptacle does not
fall into one of the more well-defined categories. Likewise, ObSEL:V&tiOHS in container code 5
(CT5) are dumped into container code 6 (CT86). The combining of some observations was
suggested by more experienced personnel. The complete data set is now available for use in
PROC STEPWISE.

Again, PROC STEPWISE will be used to obtain a smaller Subset of regressor variables
from the pool of possible regressor variables, It has been suggested (by more experienced
personnel) that 27 variables should bg forced into the model for the entire stepwise proce-
dure. Because, they are lower order terms, tha.t are believed to be important, and hence
.should remain in the médei Ias long as possible. That is,.they will remain in the 1Inoclel until
the final stages of modél-reﬁnement,- and then will be rémoved only if it is beneficial 1:01‘ the
model. The 27 variables are forced into the model by using the ‘.‘include option” available
in SAS. Specifically, inserting “include 27" at the end of the model statement in SAS, will
force the first 27 variables in the model statement. The forced in ﬁ-.fa,ria.bles are: AD, PD,
FD, VC, PDS, (ADY,(PD)?, (FDY?, (V D)2, (PDS), PDUMMY, ADUMMY, LDUMMY,

MRI-MR5, MR8-MR11, CT1-CT4, and CT6. As mentioned before, the default SLE and
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SL.S \’aiues are 0.15, I have chosen SLE and SLS values of 0.20 for both significance levels.
The reason for choosing these levels is that collinearity may be present among the regressor
variables, and 1 want a good subset of the original set of regressor variables that possibly
contains, as a subset of it, a set of significant val‘iables (significant at the 0.05 level), where
collinearity is not an evident problem.

The default SLE and SLS values are changed by inserting “SLE=.2 SL5=.2"at the end
of the model statement in SAS. Since variables are forced into the model, and the SLE and
SLS values have been changed, “include 27 SLE=.2 SL5=.2" is inserted at the end of the
model statement in SAS to accomplish both of the above mentioned objectives. As PROC
STEPWISE is run, variables will enter and exit the model until, at the ﬁﬁa] step, the model
includes 27 forced in variables and those “unforced” variables that have met the SLE=.2 and
SLS=.2 criterion.

After PROC STEPWISE Eas completed, an examination of the end of the .lis output flle
reveals that step where where C, is approximately equal to the number of model parameters.
Step 38 shows C, = 57.76748, and the number of terms in the model equals 58 for this step.
After locating step 38 in the main body of the .lis output file, the variables associa-ted with
step. 38 become the subset of regressor variables suggested by PROC STEPWISE. The subset
of regressor variables will be used in PROC REG for tfurther m;)del refinement. As a note,
the R? statisic is reported as .8878, and R2 is not provided as part of the usual .lis output
file in PROC STEPWISE.

PROC REG is run with the VIF option using the 58 variables suggested by PROC STEP-
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WISE. As a note, the initial run (run 1) of PROC REG yields: R*= .8878, and R%=.8830.
R? is consisteni with that obtained from PROC STEPWISE, and provides a ched; that the
desired terms have been transferred to PROC REG. An examination of the VIF’s reveals 10
unforced terms and 16 forced terms with VIF’s over 10. The largest YIF is 40275, and it is
associated with the variable LD2MR4. Variables CT4MR4 and PDS2 have VIF’s over 10000.
The variable LD2MRA will be deleted, and PROC REG will be re-run. Run 2 yields: R? =
| 8810, and the largest VIF drops to 962 (from variable CT4MR4). The variable CT4MR4
will be deleted, and PROC REG will be re-run. Run 3 yields: B? = .8796, and the largest
VIF now drops to 95 (from variable CCDL2). The variable CCDL2 will be deleted and
PROC REG will be rerun. This process of deleting a variable and re-running PROC REG
continues until ail unforced variables have VIF’S less than ten. From inspection of the .lis
output file corresponding to run 9, it is found that the VIF’s for all unforced variables are
under .10.

Now, the focus of the model building procedure will shift, and insignificant, unforced
variables will be deleted from the model. The variable CT6MRI11 has a p-value of .6501
and a VIF of 1.65. This is the largest p-value associated with all unforced variables, and
CT6MR11 will be the first _varia,ble to be deleted based solely on significance. H two variables h
have p-va.lu;as that are approximately the same then the variable with the larger VIF will
be deleted first. .R.un 12 reveals that all unforced variables have VIF’s less than 10, and the
largest p-value for an unforced variable is 0.06 (associated with LDMR?2). As a note, there

are 6 forced in variables that have VIF’s over 10. The emphasis for variable deletion will shift



again. Now, those variables (forced or unforced) that are least significant will be deleted
one at a time. Variable MR10 has a p-value of .9322, and is the first candidate for delction.
Again, t.his process of deleting variables, one at a time, will continue until all variables are
significant at the 0.05 level.

From an inspection of the .lis output file associated with run 27, it is found that all
variables are significant at the .05 level. There is still a slight problem with VIF’s. A ;fe»\f
of the forced in variables still have VIF's over ten. Variables with the largest VIF’s will be
deleted until all variables are signiﬁcaﬂt at the 0.05 level, and the VIF of no variable is over
10. Inspection of the .lis output file, associated with run 32, reveais that all variables are
significant, and all VIF’s are less than 10. The largest VIF is 7.7 (from ADUMMY), and
the largest p-value is 0.0492 {from FD2MR1). The final subset of model variables has now
been determined, and R? is found to be 0.847,

A Q-Q plot of ¢; vs the ith order statistic of ¢; has been generated using SAS. The plot
does not follow the ideal (see page 35). There is an s-shape which suggests the error terms
are heavily tailed. That is, a few observa.tion.s have unusually large residuals. A plot of ¢;
vs. §; is not very helpful (see page 34}); a few extreme observations have compromised the
effectiveness of the plot.

It has been suggested to perform a re-weighted least squares. From the last run of
PROC REQ, VMSE is found to be 185.48, and 3*VMSE= 556. If ((-556 < e; < 556) ,
i=1,...,1412) is a false statement for observation ¢ then y; is given weight zero. Subsequently,

the ith observation is deleted from the data set and the model is refit. After this refitiing is
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complete, R? is equal to 0.943, and an inspection the Q-Q plot presented on page 36 shows
1t 1s reasonable to conclude the normalily assumption has not been violated. Hence, the
re-weighted least squares approach appears to have .helped the model.

The estimated coeflicients, associated VIF’s, and p-values for the terms associated with
each of the three final models are presented on pages 31, 32 and 33. As a note, the response
variable is DTSUM for the MDR and BAM data sets, while a log transformation of the re-
sponse (Ln(DTSUM)) was used for the SDR data set. The log transformation was suggested
by more experienced personnel. On pages 27-30, tables summarizing the variable deletion
process for each data set can be found. These tables show which variables were deleted, RZ,
VIF’s , p-values, and the criterion for deletion corresponding to each step. As an important
note, preliminary data analysis found the SDR data set to be recorded in error. The data
from observation sites 333 and 377 were entered in duplicate! This error was not discovered

by the PRC witnesses. The model I fit to the SDR data excluded the duplicate observations.

Conclusion

I have improved on the previously proposed loadtime variabliity models. The models are
improved in that: 1) R has increased for each model, 2) VIF’s are reasonable in magnitude,
thereby removing the collinearity problems, 3) the model variables are slatistically signifi-
cant, and 4) basic assumptions have been verified. The PRC has taken notice this model

building procedure and will be considered as a viable procedure ir future models of loadtime.



Diagnostics of PRC Proposed Models

BAM DATA
Variable VIF | p-value
MR6 1.1] .0336
MRS 1.0 | .0001
CT1 11| .0759
CT3 1.0 | .0001
PD 521 .0001
AD 54| .0001
PDS 53.5 1 .0001
LD2 2.3 | .0001
PD2 52| .0062
AD?2 4.6 | .0001
V(G2 17.6 | .0119
PDS2 [ 14351.2 | .0001
LVDC 36.6 | .0217
LDPDS | 11094.0 | .0001
FADD 2.1 .0001
FVDC 10.4 | .0839
FDPDS 296.2 | .0001
ADPDS 451 .0005
VCPDS 77.9 | .0001
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Plot of ZSCORE*STUD. Legend: A = 1 obs, B = 2 obs, etc.
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Diagnostics of PRC Proposed Models
MDR DATA

Variable | VIF | p-value

LD 135 .0444
FD 11.0 | .0022
PD 3.6 .0001
VC 2.0 | .0001
AD 2.5 .0001

PDS  |11.6]| .0001
FD2 67.4 | .0001
PDS2 (174 .0001
LFDD |92.4 | .0001
LPDD |58.0] .0001
LADD {97.3| .0953
LVDC | 225| .0001
FPDD |19.5 | .0001
FADD (25.0{ .0001
FVDC | 76| .0001
FDPDS |53.7 | .0402
PADD [44.2( .0002
PVDC |242| .0001
ADPDS | 57.8 | .0004
VCPDS | 8.4 .0844

MR2 1.2 0301
MR7 1.3 .0001
MR8 1.0 0464
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Diagnostics of the PRC Proposed Models
| SDR DATA

Variable | VIF | p-value
MR2 1.4 .0001
MR3 1.5 .0001
MRA4 1.0{ .0001
MR5 1.1| .0008
MRT 1.0] .0001
MRS 11| .o001
MRY 1.1| .0139
CT1 3.0 .0001
CT3 2.0 .0001
CT4 2.21 .0001
LD 2.0 .0001
FD 1.7 .o001
PD 44 .0001
AD 2.4 | .0001
\'(¢ 571 .0001
LD2 . 22.1 | .0001
PD2 45 .0001
V(2 104 | .0001
LFDD 9.2 .0001
LADD 47 0001
LVDC 70.4 | .0001
FADD 3.8 | .0323
FVDC 19.5 ] .0623
PADD 2.3 | .0001
PVDC {1543 | .0001
AVDC |[159.2 | .0001
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Summary of the Variable Deletion Process

BAM DATA
Run Variable R VIF | P-value | Deletion
Number | Deleted Criterion

1 LD2MRA4 8830 | 40297 | .0001 VIF

2 CT4MR4 8810 962 | .0001 VIF

3 CCDL2 8796 95 | .0072 VIF

4 MRDL11 8791 90 | .0019 VIF

5 DUMPL 8783 64 | .0236 VIF

6 PD52MRI11 | .8779 44 1.0001 VIF

7 | PDS2CT2 8501 14 | .4430 VIF

8 LDCT4 .8501 11 | .0132 VIF

9 CT6MR11 | .8496 1.65 | .6501 P-VALUE
10 PDAD 8497 | 244 | 2313 .| P-VALUE
11 PDSMR8. | .8496 1.59 | .2320 P-VALUE
12 MRI10 8496 | 1.1 | .9322 P-VALUE
13 MR4 8497 1.9 | .9126 P-VALUE
14 PD2 .8498 5.1 |.7200 P-VALUE
15 MR3 .8499 1.3 | .6970 P-VALUE
16 CT2 8500 17.1 | .6695 P-VALUE
17 V(G2 85601 4.8 { .241 P-VALUE
18 VC +.8500 1.2 | .9569 P-VALUE
19 CT3 8501 1.4 .7306 P-VALUE
20 CT4 .8502 1.5 | .3891 P-VALUE
21 MR5 8502 1.9 { .3130 P-VALUE
22 MRS .8502 1.0 | .2200 P-VALUE
23 MR1 8502 1.4 |.1683 P-VALUE
24 CT2MR1 8501 1.2 | .1115 P-VALUE
25 MR9 .8499 1.4 §.1741 P-VALUE
26 MR2 .8498 1.7 | .1142 P-VALUE
27 LDMR2 8497 1.2 | .2426 P-VALUE
28 PDS2 8496 | 24.2 | .0001 VIF

29 AD2 8481 6.4 | .0271 VIF
30 FD2 8477 6.5 | .0396 VIF
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Ssummeary of the Variable Deletion Process

MDR DATA
Run Variable R VIF | P-value | Deletion
Number | Deleted Criterion
1 VCLD 9616 | 10936 | .0003 VIF
2 LFDD 9612 256 | .0001 VIF
3 LPDD 9531 195 | .0663 VIF
4 FD2MR4 0527 117 | .0010 VIF
5 PADD 9525 | 39.72 | .0001 VIF
6 PDSPD 9515 [ 51.7 | .0001 VIF
7 PVDC 9492 | 32.4 ] .0328 VIF
8 LD2MR2 .9490 322 1.0003 VIF
9 LD2MR1il | .9488 32 | .0001 VIF
10 PDS2MRI1 | .9375 12.8 | .8605 P-VALUE
11 VC2MR11 | .9376 | 21.5 | .5000 | P-VALUE
12 FPDD 9376 18.8 { .1620 P-VALUE
13 ADCT1 9376 ¢ 254 | .0136 VIF
14 FDMR4 9373 12.7 | .9618 P-VALUE
15 FD2MR7 |.9374| 751 .8226 |P-VALUE
16 LVvDC 9374 18 | .0031 VIF
17 PDMRA4 9371 11.6 | .1100 VIF
18 LDPD 9370 12.5 1 .0001 VIF
19 PD2 9358 17 | .3282 VIF
20 PDS2 9358 11.3 | .1434 VIF
21 AD?2 .9358 14 | .0194 VIF
22 LD2 9356 13.6 | .0001 VIF
23 ¥DPD .9309 3.1 [.7489 P-VALUE
24 VCMRI11 .9310 2.2 | .9978 P-VALUE
25 ADMR2 9310 1.5].9411 P-VALUE
26 MRDP4 9310 1.7 | .8400 P-VALUE
27 ADMR11 09311 2.5 .7914 P-VALUE
28 FD2MR2 9311 1.1 | .2850 P-VALUE
29 LDUMMY | .9311 1.1|.9240 | P-VALUE



Summary of the Variable Deletion Process
MDR DATA cont.

Run Variable | R? | VIF | P-value | Deletion

Number | Deleted Criterion
30 PDMR2 | .9312 1.2 | .1689 P-VALUE
31 MR7 9311 4.1 [.7317 P-VALUE
32 PDMR3 | .9312 4.9 | .1658 P-VALUE
33 VC2MR1 | .9311 1.1 | .0622 P-VALUE
34 CT1 9310 1.8 | .4114 P-VALUE
35 CT3 9310 1.0 | .357 P-VALUE
36 CT2 9310 1.1 | .2342 P-VALUE
37 AD 9310 2.1 |.2703 P-VALUE
38 FD 9310 | 8.4 ].24271 | P-VALUE
39 [FDMR7 |.9309 | 1.6(.0708 |P-VALUE
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Summary of the Variable Deletion Process

SDR DATA
Run Variable | R? | VIF | P-value | Deletion
Number | Deleted Criterion

1 DUMPL | .4752 172 } .0001 VIF

2 MRDL3 | .4750 | 124.9 | .0839 VIF

3 VCLD 4749 | 108 | .0001 VIF

4 CT3MR3 | .4741 § 106.9 | .0003 | VIF

5 LDLD A737 | 70.4 |.0519 | VIF

6 VCCT1 | 4736 | 48.9 | .0501 VIF

7 PDLD A735 1 38.5 (.0015 | VIF

8 FD2CT3 | 4732 8.7 | .0200 VIF

9 CT1IMRY | .4731 16 | .0001 VIF

10 LDMR5 | .4723 16 | .0010 | VIF

11 AD2 A710 | 13.4 | .0452 | VIF

12 PDAD 4709 { 2.2 | .8997 P-VALUE
13 CT1 4709 | 15.6 | .0301 P-VALUE
14 CT2MRS5 | .4708 1.4 | .7873 P-VALUE
15 VC2CT2 (| .4708 1.1 | .3652 P-VALUE
16 LD2MR?2 | .4708 1.9 .2464 | P-VALUE
17 CT3MR2 | .4708 1.1 | .2290 P-VALUE
18 FADD 4708 2.6 1.1747 | P-VALUE
19 ADMRY | 4707 2.5|.1025 |P-VALUE
20 FPDD 4707 1.1 ].1030 P-VALUE
21 CT3MRI [ .4706 1.1 |.0791 P-VALUE
22 CT3 4706 | 4.0 | 4552 | P-VALUE
23 AD 4706 | 11.1 | .0001 VIF
24 MR9 4696 2.9 | .2573 P-VALUE
25 PDMR3 | .4696 1.6 | .0585 P-VALUE
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Proposed Model for the BAM Data

Variable VIF | p-value

LD 6.3 .0001
FD 2.9 .0010
PD 1.21 .0273
AD 6.3 .0001
PDS 2.8 .0001
LD2 6.51{ .0001
CT1 17| .0001

PDUMMY | 1.2 .0001
LDUMMY | 1.7 .0001
ADUMMY | 7.7 .0001
FDMRI1 2.17 0001
ADMRS 5.8 0001
ADMRI1 1.9 .0001
PDSMR11 | 14| .0001
FD2MR1 1.0 0492
PDS2MR2 | 1.0 0012

FDCT1 4.9 | .0001
PDCT3 1.0 | .0001
VCCT3 1.0 .0001

PDSCT2 | 1.2 .0001
FD2CT1 | 40| .0001
CCDA1 49| .0026
MRDPY 12| .0017
MRDA9 | 16 .0001
MRDA1l | 1.9( .0003
CT4MRI1L | 1.6 .0001
DUMPA | 19| .0073
FDAD 23| .0018
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Proposed Model for the MDR Data Set

Variable VIF | p-value

LD 7.5 .0001
PD 2.8 .0001
VG 6.7 0482
PDS 5.6 0001
FD2 1.5 .0001
VG2 8.7 .0001
MR1 1.3 .0003
MR3 ] 23 0001
MR4 2.2 .0001 -
MRS 2.5 0162
MR9 1.1 .0033

ADUMMY | 1.8 .0001
PDUMMY | 1.2 .0394
PDSMRI11 | 5.8 .0001
LDMR3 3.2 0001
LDMRI11 5.8 .0001
PDMRI11 2.0 .0001
LD2MRY7 2.2 .0001
VC2MR4 1.9 .0001
VCCT4 1.2 .0408
FD2CT4 1.2 0001
MRDP7 1.4 .0001
CT2MR2 1.0 .0001

VCPD 2.8 | .0001
LDAD 45 | .000I
VCAD 3.6 .0001
FADD 21| .0008
AVDC 3.1 | .0001
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Proposed Model for the SDR. Data,

Variable VIF | p-value Variable | VIF [ p-value
LD 2.8 | .0001 LD2MRS8 | 3.7 0039
FD 5.1 .0001 _ FD2MR3 | 1.4| .0056
PD 5.0 | .0001 FD2MRS | 3.2 | .0001
vC 41 .0001 VC2MR2 | 1.2 0132
LD2 2.0 | .0001 VC2MR3 | 1.2 .0003
FD2 29| .0001 LDCT3 20| .0217
PD2 44 | .0003 ' FDCT3 2.0 | .0015
CT2 3.3 | .0001 PDCT4 L1| .0013
CT4 11| .0001 VCCT4 1.0 .0020
MR1 1.6 | .0001 _ MRDL5 4.8 | .0001
MR2 3.9 .0001 MRDA8 | 1.1 .0001
MR3 5.4 .0001 _ MRDP2 1.8 0001
MR5 54| .0001 MRDP3 31 0001
MR8 1.6 .0001 MRDP5 1.3 | .0060
PDUMMY | 3.9 | .0001 - MRDP9 1.3 ] .0407
ADUMMY | 32| .o001 CCDP2 1.5 .0001
LDUMMY | 1.9 .0001 ' CCDA2 1.1 .0002
LDMR3 8.5 | .0001 : CT2MR2 | 1.1 0001
FDMR2 2.8 .0001 DUMPA | 2.0 .0207
FDMR9 3.3 | .0001- FDPD 3.0 .0001
PDMRS 1.6 | .00028 PDPD 2.0 .0323
PDMR9 1.2 | .0001 ADPD 1.8 .0195
VCMR1 L2 .0212 ADLD 1.9 | .0023
VCMRS 1.2 0106 ADAD 2.0 0001
LD2MR3 1.1 .0001 FDAD 1.8 | .0001
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0-Q Plot of Proposed Model

BAM DATA

etc.

B = 2 obs,

Legend: A = 1 obs,

Plot of ZSCORE*STUD.
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Legend: A = 1 ohs, B = 2 obs, etc.
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