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INTRODUCTION

Non-intrusive, non-destructive identiﬁcation-methods of fill materials in various containers
have important applications. Such methods are of use when contact with or destruction of the
containers is expensive or dangerous. Some applications include quality inspection, treaty
verification, and facilitation of efficient and safe disposal of hazardous munitions,

One non-intrusive, non-destructive method of fill identification is based on examining the
container's resonance properties. In this method, a broad band acoustic source generates
vibrations on the object's surface. The vibrations induce natural resonance modes on the
container which are measured with a laser vibrometer, producing a resonance spectrum or
signature. If the fill affects the vibration characteristics of its container in 2 detectable and
consistent manner, the vibration characteristics should be apparent in the signature, thus providing
the necessary information for fill material clas_siﬁcaticm. In particular, fill density and viscosity
may affect the vibration resonance frequencies and their amplitudes.

Classification is obtained through a 4-nearest neighbor discriminant statistical analysis of
the resonance spectra. In this method, a vector of spectrum features from an unknown signature
is compared to similar vectors from a group of training signatures with known fill characteristics.
The identities of the training signatures that are the & nearest neighbors (in the vector space) to
the unknown signature are used to classify the unknown signature. Proximity in the vector space
is determined using Mahalanobis distance or a similar metric. To the degree that the feature
vectors cluster the signatures in distinct regions of the vector space, successful classification is
achieved.

The key to successful classification is in determining an appropriate vector of variables or
features to use in the discriminant analysis. The acoustic signature raw data consist of a large

number of frequencies and their associated resonance amplitudes. It is theoretically possible to



perform a k-nearest neighbor discriminant analysis based on all of the raw data. Using so many
variables, however, would lead to slow implementation and may not be possible except with very
large computing resources. More importantly, using all of the variables would not necessarily
produce the best classification results.

The purpose of this report is to investigate which of several feature selection methods for
acoustic data will yield the best set of discriminant variables. The feature selection methods that
were examined are based on one of two approaches. In the first approach, frequencies having the
maximum amplitudes are identified. The second approach is based on one-to-one pattern
matching of all peak locations within a selected frequency range. A peak is an amplitude larger
than each of its two immediate neighbors.

The feature selection methods were applied to data pertaining to the classification of
simulated chemical weapon fills. Three data sets of vibration resonance .signatures from two
container types were examined. The container types consisted of 155 mm artillery munitions and
capped pipes. They were filled with varying amounts and types of chemical fills. These chemical
fills were chosen to simulate the density and viscosity characteristics of agents found in chemical
weapons. In addition, the focal location of the measurement laser was varied. The objects were
classified according to both the type and amount of fill they contained.

This report briefly describes the theory behind the inspection method as well as the laser-
acoustic system used to determine fill particulars. Details about the data set details also are
provided. The method of k-nearest neighbor discriminant analyses is described and the manner in
which the degree of success was judged is explained. The remainder of the report is devoted to
an exploratory investigation of the feature selection methods and a .comparison in terms of

successful classification of the various data sets,



INSPECTION SYSTEM

To obtain an object's resonance signature, the object is first made to vibrate in response to
broad band white noise emitted by a loudspeaker. The object's acoustic excitation is measured
with a non-contacting laser vibrometer focused at a point on the object. Doppler shifting in the
laser light is sensed by the instrument and converted to instantaneous surface velocity measures
which are in turn digitized. Fast Fourier transforms are calculated from the digital data and
signatures are estimated by averaging the fast Fourier transforms. For more detail on the laser-

acoustic inspection system see Blackwood, et al (1994).

OVERVIEW OF DATA

The three data sets examined are referred to as uncentered bullet data, centered bullet
data, and pipe data. Both bullet data sets were measurements made on the same set of 155 mm
artillery shells, 23 inches in length. The shells were measured standing upright on a concrete
surface. For the uncentered bullet data the laser was focused off-center at a point 14 inches up
from the shell bottom. For the centered bullet data the laser was focused near the shell center at a
point 11 inches from the shell bottom. The pipe data set measurements were made on 18 inch
long pipes sealed with rounded caps. A table-mounted stand allowed the pipes to be placed
upright while measurements were taken. For the pipe data the laser was focused at a point 9
inches from the pipe bottom.

For several of the measured pipes and bullets there were an insufficient number of
replications for analysis purposes. In addition, several pipes and bullets had duplicate
measurement replications that would complicate analysis. After such unusable observations were
removed, the uncentered bullet data and centered bullet data each include 76 distinct objects while
the pipe data contain measurements on 75 distinct objects. The measurement process was

repeated 3 times on each object resulting in 228 total observations in both the uncentered and



centered bullet data, and 225 in the pipe data.

Of the three replications made on each object in all data sets, two were randomly assigned
to a training set while the remaining was assigned to a test set. Distinct training and test sets
allow for pseudo-jackknife validation using only the training sef as well as true cross-validation by

using the training set to classify the test set. Table 1 summarizes the data.

Table 1; Data summary.

Number of Number of Total number of
observations in observations in observations in
Data set training set test set - data set
uncentered buollet ' 152 76 228
centered bullet 152 76 228
ipe 150 75 225

Two types of variables were considered for each object, classification variables and

classifier variables. The classification variables define the characteristics to which we hope to

_classify the objects (i.e., fill level and fill type). The classifier variables consist of the resonance

amplitude information at the sampled frequencies, in effect encoding the signature information. -
The classifier variables make up the set of information from which features are selected for input

into the k-nearest neighbor analysis.

Classification Variables
Each object (bullet or pipe) was filled with a particular type and amount of chemical. The
variables identifying the object's fill include the filt level, the chemical simulant, and the more
general agent group to which the chemical simulant belongs. There were 4 po_ssible fill levels
consisting of 100, 75, 50, and 25 percent full. Nineteen distinct chemical simulants were divided
into 8 non-overlapping groups based on the agents they simulate. The agent groups are GA, GD,
VX, HD, HN3, L1, QL, and DF. Within each agent group the different chemicals were intended

to correspond to different levels of agent purity. For example, dimethy! sulfoxide simulates the



DISCRIMINANT ANALYSIS METHOD

K-Nearest Neighbor Discriminant Analysis

Suppose an object belongs to one of a set of 77 mutually exclusive populations
R, K ,...B, (eg filllevels). Given a vector of measured variables of the object (e.g. spectrum
features), y, we wish to classify the object to one of the populations. Assuming all
misclassifications are equally costly, the -nearest neighbor approach is to classify the object to
population F, if for a training set of data

7, (k; [n,)> 7, (k. [n,) for all i j
where £, is the number of k-nearest neighbors to y that are members of £, n, is the number of
training set members that belong toF}, and 7, is the prior probability of membership in P The
choice of the number of neighbors considered, £, is typically small. For the following applications
k was chosen to be 1 or 3. '

Determining proximity to y is done using a Mahalanobis distance metric. The
Mahalanobis distance between Y from an unknown populat_ion and x;, a vector of known
population membership P, is

D(yx) =Wy -xy V' (p-x)1"
where ¥, is the covariance matrix of £;. The covariance matrix is generally unknown and may be

approximated by one of several methods including
» apooled covariance matrix
* adiagonal matrix of the pooled covariance matrix,
* acovariance matrix within population ;
* adiagonal of the covariance matrix within population i
» anidentity matrix

For purposes of this analysis, a pooled covariance matrix or an identity matrix was typically used.
Appendix 1 outlines the relationship between £-nearest neighbor discriminant analysis and

traditional discriminant analysis,



Measnres of Success

Both fill level and agent group classification results were examined to judge the
discrimination methods' effectiveness. K-nearest neighbor discriminant analysis classifies an
observation based on its proximity to members of the tréining set. Jackknife validation examines
how well the selected variables enable the training data to classify its own members. Each training
set observation is classified using the remaining training observations. For true jackknife
validation of an observation, the covariance matrix used in calculating the Mahalanobis distances
is estimated without using that observation, necessitating as many covariance matrix estimates as
there are members in the training set. For computational convenience, pseudo-jackknife
validation was used. For pseudo-jackknife validation, only one covariance matrix estimate based
on all the training observations is used in calculating the Mahalanobis distances. The percentage
of the training set correctly classified was calculated as a measure of success. The pseudo-
jackknife validation results tend to be optimistic,

Successful classification was also examined using true cross-validation. Each test set
observation was classified using the training observations. As before, the percentage of the test

set correctly classified was calculated as a measure of success.
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FEATURE SELECTION METHODS

Frequencies of Maximum Amplitudes

Suppose a particular peak appears in all signatures for a specific type of object, but the
exact peak frequency shifts depending on the contents of the measured objects. The frequency
location of this "moving peak” may be used in fill discrimination. For example, consider the fill
level for a set of 155 mm bullets. Suppose a noticeably large peak occurs at approximately 2,600
Hz for all the measured bullets, with the exact peak frequency shifting between 2,500 Hz and
2,750 Hz. Now, consider the 25, 50, 75, and 100% fill level groups separately. If the peaks
cluster in the range 2,225-2,575 Hz for the 100% fill level bullets, but in the 2,575-2,625 Hz for
the 75% fill level bullets and so forth, then the frequency of the peak will be a feature with
substantial discriminatory power. See Figure 2 for a simple iltustration of this moving peak.
Since there will be numerous smaller peaks in the range 2,500-2,750 Hz that are data noise, the
key peak may be isolated by searching for the frequency of the maximum amplitude in that range.
This is the frequency of maximum amplitude method of feature selection.

To select the moving peak frequency features, certain frequency ranges are examined for
their maximum amplitudes and the frequencies associated with them. By comparing these
frequency locations relative to the characteristic of interest (1.e., fill level or agent group) the
importance of a particular peak is determined. Although not directly a part of the moving peak -
pattern, the actual maximum amplitudes can also be used in the discriminations if they are found
useful. |

The various criteria of range selection that were investi gated consisted of the following:
arbitrary contiguous spanning ranges, ranges indicated by nonparametric Kruskal-Wallis ANOVA
tests, and visually selected ranges. These three methods. were implemented for both fill level and

agent group classification using both of the bullet data sets and the pipe data set.
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Arbitrary Contiguous Spﬁmﬁng Ranges
The 0 to 12,000 Hz frequency range was divided into sixteen contiguous spanning

frequency ranges. The first eight ranges were approximately 500 Hz wide while the last eight
were approximately 1,000 Hz wide. This partitioning was motivated by the considerably higher
amount of amplitude activity observed in the lower frequency ranges. Although this may not be
the best method of isolating moving peaks, it should establish to some extent their slnﬁmg effects.

Recall that different sampling frequencies were used in gathering the bullet data and the
pipe data. For the two types of objects this results in a different number of amplitude variables
spanning the same frequency range. For the same frequency_range there are approximately four
times as many bullet amplitude variables as there are pipe amplitude variaBles.

The frequency of the maximum amplitude in each of the sixteen ranges were calculated for
each resonance spectrum in each of the three data sets. For each of the three data sets, the sixteen
variables were used in distinct k-nearest neighbor discriminant analyses classifying the

observations separately to fill level and agént group.

Nonparametric Kruskal-Wallis ANOVA

A nonparametric approach to range selection was also pursued. To determine which
ranges would be beneficial to use, a sequence of tests using Kruskal-Wallis analysis of variance
was employed. This analysis looks for important frequency ranges by identifying frequencies at
which there are significant differences in amplitudes between classification groups in the training
data set. To the extent that it correctly identifies the range over which a peak moves, this should
yield superior classification than the arbitrary contiguous spanning frequency ranges approach
which could inadvertently split or merge moving peak shifting ranges.

The Kruskal-Wallis ANOVA tests are calculated as follows. Consider A/ groups with a

variable of interest associated with each observation. Let n_ be the number of observations



assoctated with the m™ group where N = n, + n, +..+n,,. The variable values from all groups are
pooled, arranged in increasing order, and then assigned ranks. The sum of ranks for each of the
groups is found and denoted 7, for m=1,2, ... ,M. To test the hypothesis that the distributions
of the variable for the M groups are identical, the Kruskal-Waliis test statistic is

H=12/[NN +1)YY (T2/n)-3[N +1].
Under a true hull hypothesis, the above test statistic approximately follows a chi-squared
distribution with A — 1 degrees of freedom (Montgomery, 1991).

For example, we can examine one of our data sets to test if the distribution of each
amplitude variable is identical for the four fill levels. For every amplitude variable that is found
significant at the 0.05 level, the fill level with the largest mean amplitude is recorded. A frequency
range has substantial discriminatory power if it records a relatively long series of significant
amplitude variables that in turn clusters by fill level. That is, an informative range would be one
that could be further divided into smaller distinct subranges, each of which is associated with fill
level 25, 50, 75, or 100 percent full (i.e. the largest mean value for every amplitude variable in
cach subrange is 25, 50, 75, and 100% fill level respectively). In such a range, the shifting pattern
of the moving peak that is associated with the various fill levels is clearlf visible and the
frequency location of the peak can be used to discriminate between fill levels.

The above procedure results in considerable data reduction. Suppose that the Kruskal-
Wallis ANOVA for the uncentered bullet data identified four significant ranges for discriminating
between fill level. After determining the maximum amplitudes and their assoctated frequencies in
each of those subranges, each spectrum can now be characterized by 8 parameters: 4 amplitudes
and their 4 frequencies, rather than the original 1,180 amplitude variables. A #-nearest neighbor

discriminant analysis would then be implemented based on those variables.
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Visually Selected Frequency Ranges

The Kruskal-Wallis analysis may not successfully identify appropriate frequency ranges. It
could cut off the extreme tail ends of the ranges which may not show up as significant but are still
important in discrimination. Or it may find all frequency variables significant. Therefore it may be
beneficial to examine representative acoustic spectra and see if important f‘requen-cy ranges can be
visually selected.

The visually selected ranges were the same for the two bullet data sets and somewhat
different for the pipe data. They are given in Table 3.

Table 3: Visually selected ranges.

{Bullet data : Pipe data:

[Frequency range (Hz) Variable numbers  Frequency range (Hz) Yariable numbers
1,500-2,000 150-200 750-1,750 18-43
2,000-2,800 200-280 1,750-2,500 44-61
2,800-3,200 280-320 2,500-3,250 62-80
3,200-4,000 320-400 3,250-4,250 80-105
5,500-6,500 - 550-650 5,250-6,250 129-154
7,000-8,200 700-820

K-nearest neighbor discriminant analyses were employed using the frequencies of the

maximum amplitudes within those ranges.

Pattern Matching Methods

The frequency of the maximum amplitude approach deals only with major amplitudes in
certain frequency ranges of an object's resonance spectrum. It may be that even secondary
resonance peaks are characteristic to the object's fill qualities. In that case, spectra could be -
compared by matching more detailed amplitude patterns. What is desired is a sensitive direct one-
to-one matching between signatures over a reduced frequency range, aiming to detect more subtle
differences than the frequency of maximum amplitude approach. Therefore, the only data
reduction implemented is the reduction of the frequency range over which signatures are

compared. Several approaches to pattern matching were pursued mcluding the following: pure

1



amplitude matching, standardized amplitude matching, and binary peak vector matching. For all
three methods, the reduced frequency ranges considered were.determined by observed resonance
activity and limitations of computing resources. The ranges chosen were also adjusted in

response to empirical results.

Pure Amplitude Matching

One simple way to compare objects’ acoustic patterns is to examine their resonance
amplitudes over a range of frequencies in which dominant peaks are occurring. By doing so, the
acoustic spectra are assessed for similarity both in pattern of peak appearance and for the
comparative magnitude of those peaks.

The selection of the frequency range was based on overall level of peak activity. Subject
to computing restrictions, preliminary examination indicated that the best frequency range to use

was 2,000-3,500 Hz.

Standardized Amplitude Matching

| Examination of individual spectra indicates that some acoustic signatures' amplitudes differ
from others by very large orders of magnitude. These differences appear to be unrelated to
classification groups. Since magnitudes of peaks would affect the discriminant analyses using
pure amplitude matching, analyses were also performed using standardized amplitude matching.
Two types of standardization were investigated. For the first standardization, each amplitude in a
signature from the frequency range 2,000-3,500 Hz was divided by the maximum amplitude for
the signature in the frequency range 2,000-5,500. For the second standardization, each amplitude
in the frequency range 2,000-3,500 Hz was divided by the mean amplitude in the frequency range
2,000-5,500. The slightly larger frequency range of 2,000-5,500 Hz was used for the selection of

the mean and maximum amplitudes to obtain a better measure of average amplitude.
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Binary Peak Vector Matching

The previous two pattern matching approaches involve comparing both peak locations and
amplitudes. It is possible, however, to compare signatures based only on the location of the
peaks. To do so, each signature was reduced to a binary vector indicating the pattern of peaks by
examining each amplitude variable in sequence. If an amplitude was larger than both of its
neighbors it was considered a peak and recorded as a "1". Otherwise, it was not considered a
peak and recorded as a "0". K-nearest neighbor analyses were run based on selected frequency

ranges of the binary peak vectors.

FILL LEVEL CLASSIFICATION RESULTS

‘ Uncentered bullet data

Table 4 lists the fill level classification results for the uncentered bullet data. Typically
only the frequency variables and not the actual amplitudes were found useful. The exceptions are
indicated below. The Kruskal-Wallis ANOVA tests on the uncentered bullet data set identified
four significant frequency ranges including 2,420-2,760 Hz, 3,510-3,830 Hz, 4,960-5,050 Hz, and
6,870-7,210 Hz. Both the frequencies of the maximum amplitudes and the actual maximum
amplitudes from each range were found important in the discriminant analysis. For the visually
selected ranges, only the frequency of the maximum amplitude in each of the 6 ranges given
previously in Table 3 were found important in the discriminant analysis. The binary peak vector
matching discriminant analysis was run on the frequency range 1,500-3,000 Hz (approximately
150 amplitude variables). For reference, note that a random allocation of observations to fill level

would result in about 25% correct classification.
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Table 4: Fill level classification results for uncentered bullet data.

Percent of training set Percent of test set
Spectrum features correctly classified correctly classified
Frequencies of maximum amplitudes '
« Arbitrary contiguous spanning ranges 58 45
» Krugkal-Wallis ANOVA 85 71
+Visually selected frequency ranges : - 68 53
Pattern matching
+ Pure amplitude matching 30 38
« Standardized amplitude matching
» By maximum amplitude 33 45
o By mean amplitude 35 34
+ Binary peak vector matching 32 42

Centered bullet data

Table 5 lists the fill level classification results for the centered bullet data. For all of the
frequency of maximum amplitude methods, only the frequencies and not the actual amplitudes
were used. The Kruskal-Wallis ANOVA tests on the centered bullet data set identiﬁed four
significant frequency ranges including 2,100-2,800 Hz, 3,490-3,830 Hz, and 5,620-6,600 Hz that
exhibited the moving peak pattern. Two other interesting frequency ranges were 4,880-4,930 Hz
and 7,500-7,560 Hz. The former was associated exclusively with fill level 100 (i.e. the mean
value for 100% fill level was always largest) and the latter with fill level 50. The binary peak
vector matching discriminant analysis was run on the frequency range 1,500-3,000 Hz

(approximately 150 amplitude variables).
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Table 5: Fill level classification results for centered bullet data.

Percent of training set  Percent of test set
Spectrum features correctly classified correctly classified
Frequencies of maximum amplitudes
« Arbitrary contiguous spanning ranges 69 45
» Kruskal-Wallis ANOVA 79 79
» Visually selected frequency ranges 84 86
{Pattern matching
» Pure amplitude matching 62 64
« Standardized amplitude matching
e By maximum amplitude 66 63
» By mean amplitude 63 63
+ Binary peak vector matching 36 34
Pipe data

Table 6 lists the fill level classification results for the pipe data. For all of the frequency of
maximum amplitude methods, only the frequencies and not the amplitudes were used. The
Kruskal-Wallis ANOVA tests on the pipe training set indicated that at the .05 level virtually all of
the amplitude variables were significant, thus were unsuccessfisl in isolating important frequency
ranges. However, several ranges were distinct in that theﬂr did exhibited the moving peak pattern
associated with different fill levels. Three ranges so identified were 1, 139-1,667 Hz, 2,603-3,782
Hz, and 5,165-5,816 Hz. An additional range was considered, 5,856-6,507 Hz, that was |
associated almost exclusively with the 100 filt level. The binary peak vector matching

discriminant analysis was run on the frequency range 1,000-4,000 Hz (approximately 74

amplitude variables).
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Table 6: Fill level classification results for pipe data.

Percent of training set  Percent of test set
Spectrum features correctly classified correctly classified
Frequencies of maximum amplitudes
o Arbitrary contiguous spanning ranges 20 95
» Kruskal-Wallis ANOVA 87 92
+ Visually selected frequency ranges 92 92
Pattern matching
= Pure amplitude matching 80 88
o Standardized amplitude matching
» By maximum amplitude 73 78
» By mean amplitude 74 80
+ Binary peak vector matching 80 84
Robustness

Ideally the fill level classification method will be robust in that classification will be good
in situations that may be less than optimal. One such situation occurs if there are differences in
the point of measurement among observations. If we obtain good classification results in such a
situation it speaks well for the robustness of our method.

The uncentered bullet training data was used to classify the centered buliet data. (The
training and test centered data sets were combined.) The goal was to classify the observations by
fill level using some subset of the frequency subranges previously founf_i important by the Kruskal-
Wallis ANOVA tests on the wncentered training set (2,420-2,760 Hz, 3,5 10-3,330 Hz, 4,960-
5,050 Hz, 6,870-7,210 Hz). Using all 4 of the frequency ranges led to a successful classification
rate of 78%. Better results were found using frequencies of maximum amplitudes in the first and
third ranges only, yielding a successful classiﬁcation rate of 80%. These classification results are
better than the results for the uncentered bullet data. This certainly attests to a degree of

robustness in the frequency of maximum amplitude approach to fill level classification.
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AGENT GROUP CLASSIFICATION RESULTS

The Kruskal-Wallis ANOVA tests were unsuccessful in indicating important frequency
ranges for discrimination between agent group. Instead they found many very short runs of
frequencies with little group clustering, leading to no clear choice of significant frequency ranges.

Thus, no results for this method are presented.

Uncentered bullet data
Table 7 lists the agent group classification results for the uncentered bullet data. For both
of the frequency of maximum amplitude methods applied, only the frequencies were used. The
binary peak vector matching routine was run on the frequency range 1,500-3,000 Hz
{approximately 150 amplitude variables). A random allocation of observations to agent group

would resnlt in about 12.5% correct classification.

Fable 7: Agent group classification results for uncentered bullet data.

Percent of training set Percent of test set
Spectrum Features correctly classified correctly classified
Frequencies of maximum amplitudes '
« Arbitrary contiguous spanning ranges 35 36
« Kruskal-Wallis ANOVA - -
* Visually selected frequency ranges 41 54
Pattern matching
» Pure amplitude matching . 61 63
» Standardized amplitude matching
By maximum amplitude 57 62
+ By mean amplitude 69 72
»_Binary peak vector matching 76 86

Centered bullet data
Table 8 lists the agent group classification results for the centered bullet data. For both of
the frequency of maximum amplitude methods applied, only the frequencies were used. The

. binary peak vector matching routine was run on the frequency range 1,500-3,000 Hz
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(approximately 150 amplitude variables).

Table 8: Agent group classification results for centered bullet data.

Percent of training set Percent of test set
Spectrum Features correcily classified correctly classified
Frequencies of maximum amplitudes
» Arbitrary contiguous spanning ranges 18 25
¢ Kruskal-Wallis ANOVA - -
» Visually selected frequency ranges 45 36
Pattern matching '
e Pure amplitude matching 20 26
» Standardized amplitude matching
» By maximum amplitude 21 22
« By mean amplitude 13 29
» Binary peak vector maiching 82 74
Pipe data

Table 9 lists agent group classification results for the pipe data. For both of the frequency
of maximum amplitude methods applied, only the frequencies were used. The binary peak vector

matching routine was run on the frequency range 1,000-4,000 Hz.

Table 9: Agent group classification results for pipe data.

Percent of training set Percent of test set
Spectrum features correctly classified correctly classified
Frequencies of maximum amplitudes
* Arbitrary contiguous spanning ranges 31 33
* Kruskal-Wallis ANOVA - -
» Visually selected frequency ranges 38 35
Pattern matching
» Pure amplitude matching 38 41
» Standardized amplitude matching
+ By maximum amplitude 31 32
» By mean amplitude - 34 32
» Binary peak vector matching 28 56

18



DISCUSSION

| The successful classification rate varied depending on the classification variable
investigated, the feature selection method employed, and the type of object examined. Because
there were several factors differing between the data sets, there may be several factors
contributing to the varying classification success rates. For example, the differing sampling
frequencies between bullet and pipe measurements, their substantial difference in design and
construction, and the focus location of the measurement laser may all contribute to classification
disparities. |

For fill level classification of the uncentered bullet data, only the Kruskal-Wallis ANOVA
approach to range selection for the frequencies of maximum amplitudes successfully classified
more than 70% of the test set. However, for agent group classification of the uncentered data,
both the binary peak vector and mean standardized- amplitude approaches to pattern matching
successfully classified more than 70% of the test set. For fill level classification of the centered
bullet data, both the Kruskal-Wallis ANOVA and visual selection approaches of frequency range
selection successfuslly classified more than 70% of the test set. In contrast, for agent group
classification of the centered data, only the binary peak vector method of pattern matching
successfully classified more than 70% of the test data set. For fill level classification of the pipe
data, every method successfully classified more than 90% of the test data. For agent group
classification of the pipe data, none of the methods successfulljf classified the test set.

In general, the uncentered bullet data had superior agent group classification results
compared to the centered bullet data. In contrast, the centered bullet data had superior fill level
classification compared to the uncentered data. These classification differences could be due to
the focal location of the measurement laser. Focusing the laser near the top of the inspected
6bjects may emphasize agent group differences while muting fill level differences. Similarly,

focusing the laser near the top of the inspected objects may emphasize fill level differences while
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muting agent group differences. If so, this is consistent with the pipe data's classification results
since the pipes were measured with the laser centered. This is particularly true if it is reasonable
to suppose the muting and emphasizing effects of the laser focal location may be exaggerated by
the simple pipe construction.

The wide pipe sampling frequency of 40.67‘ Hz may also explain the pipe data's disparity
between fill level and agent group classification. The moving peak patterns for the bullets suggest
that peak shifts due to fill level difference were well over 40 Hz in magnitude. Thus, sampling at
40 Hz rather than 10 Hz should not affect fill level discrimination for the pipe data.. In contrast,
the binary peak vector matching routine that worked well for the bullet .data makes use of peak
patterns that are much more subtle, suggesting that differences in peak patterns due to agent
group occur over frequency ranges smaller than 40 Hz. If so, agent group classification with 40
Hz data would not be expected to produce particularly good results.

For classification of the bullet data to fill level, the most successful method was a %-nearest
neighbor discriminant analysis based on the frequency of the maximum amplitude in several
important ranges of frequencies. For classification of the builet data to agent group, the most
successful method was a k-nearest neighbor discriminant analysis based on matching signature
patterns within a specific frequency range. Since the two feature selection methods emphasize
different signature attributes, apparently agent group and fill level affect different signature
attributes. In particular, agent group membership may determine where peaks occur, while fill
level may determines the relative amplitude of those peaks. Members of an agent group may
always have a particular pattern of peaks that are present regardless of fill level. However, fill
level may influence the amplitudes of those peaks particular to the agent group. See Figure 3 for
an illustration of this possibility. In the figure, the frequency of the maximum amplitude is the
same for common fill levels, but different for common agent groups. At the same time, the

patterns of peak occurrence (frequencies at which they occur) are the same for common agent
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groups but different for common fill levels.
Although several methods show promise in agent group and fill level discrimination, a
higher level of successful classification would be preferable before a broad implementation of the

methods was pursued.

FUTURE S'I'UDY

Much of the analysis done to date was exploratory in nature. Verification of the ideas
suggested by the previou§ discussion would be useful. In particular, new acoustical signature
bullet data gathered with the 40.67 Hz samplin g frequency would be informative to analyze to
determine if the wider sampling frequency leads to lower successful agent classification rates. For
the same reason, acoustical signature pipe data with a sampling frequency of 10.17 Hz would be
beneficial. It would also be informative to make pipe measurements with the measurement laser
uncentered to see if this improves agent group classification.

Optimization of the more useful feature selection methods would also be beneficial. While
considerable care was taken in the range selection for the frequencies of maximum amplitudes
method, the range éelection for the pattern matching methods were less rigorously pufsued.

Effort could be made to optimize these range selections. In addition, the binary peak vector
matching method could be fine tuned. The current routine compares only exact peak matches. A
way of assessing proximity of peaks could be implemented by weighting amplitude variables for
closeness. This might result in more complete comparisons and better classification.

Some preliminary investigation was made into the possibility of a classification tree
approach to classifying fill characteristics (BI_ackwood, et al, 1994). If a classification tree
approach is pursued, it might be of interest to see how well we can classify observations to

chemical simulant type within agent group. The particular chemical simulant types and their agent

21



groups are listed in Table 2. Table 10 lists the percentages of each agent group from the centered
bullet data set correctly classified to chemical simulant type using binary peak vector matching

over the 1,500-3,000 Hz range.

Table 10: Chemical simulant type classification results for centered bullet data.

Percent of training set Percent of test set
Within agent group correctly classified correctly classified
G 69 75
GD 87 87
HD 71 - 75
HN3 91 81
Li 81 87
QL 96 92
VX 75 100

These results compare to successful classification rates of 61% and 51% when classified by
chemical simulant type without first separating into agent groups. These classification rates

speak favorably for a tree approach. Further investigation of this possibility would be beneficial.
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Appendix 1: K-nearest Neighbor and Traditional Discriminant Analysis.

The following discussion assumes that an object is to be classified to one of two
populations. Extensions to more than two populations are straightforward.

Assume y is a d x 1 vector of measures from an object belonging to one of two
populations, B or P,. Given y we wish to classify the object into the correct population. The
approach often pursued is discriminant analysis. As an initial step, a decision rule is found. IfR is
the sample space of y, partition R intoR, and R, such that R, R, = R and RnNR, = The
classification decision is to assign the object to P, if ye R, . Thus our goal is some optimal
partitioning of R. '

As an unavoidable consequence of any such classification scheme, there will be incorrect
decisions made and coéts associated with them. Let c(iff) be the cost of classifying to the i*
population an object that is in fact 2 member of population j. ‘For simplicity assume that
misclassification of a £, member to B, is as equally costly as a misclassification of a P, member to
£. Interms of cost functions, c(ilj) = c(j]i). Denote the probability that a randomly selected
object belongs to population 7 asz,. If we define risk as the éxpected loss of a classification
decision, we can denote the risk of a decision rule as

"R, Ry) = c(2fl) pr2lL, R, By) m +c(1}2) pr(12, R, R,) 7,
where pr(i| j, R, R,) is the probability of classifying an observation from F, into P, using the
partition R=R, UR, and R "R, =@,

The traditional approach to discriminant analysis 1s to assume the form of the densities
J;(¥) and minimize the risk function with respect to the partitioning R = R\ R,. The decision
rule so found is to classify the object to B if yeR where

R = {3 £ e@) 7, 2 £, c(12) 7}

otherwise classify the object to£,. R, can be expressed as

R=(s SOIL0) [ mlfee 51 W
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if £,(»)+ 0 and costs are equal. This decision rule is based on a comparison of the density ratio
to the prior ratio.

An important restriction of traditional discriminant analysis is that it requires knowledge of
the populations' density functions. It is often unrealistic to expect such exacting knowledge about
the populations, In addition, if an incorrect distribution is assumed classification performance may
suffer.

. K-nearest neighbor discriminant analysis does not require knowledge of the densities. The
theory behind k-nearest neighbor discriminant analysis is identical to that of the traditional
method. The decision rule of interest remains to classify y toF, if pe R, whereR, is defined as in
equation (1). However, now the densities are unknown and must be estimated. An intuitive
estimate of f(»)/{ £, £f,(»)] s %, /n,, the number of k-nearest néighbors of y that are members
of F, divided by the total number of members of F,. We will use the previous ratio to estimate the
ratio of densities. That is, the ratio

(4, /..nrt)/(}'c2 /1,)is used as an estimator of £,(y)/ £,().

Therefore our classification rule is to classify the object to B if ye R where

R ={y (kl/nt)/(kz/”z)z ”2/”1}
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