,/'_h“\‘

D and G Optimality and Efficiency Concerning Response Surface Designs

Shaun S. Wulff
May 7, 1994

Masters Writing Project
Montana State Univerisity
Mathematics Department,

supervised by Dr. John J. Borkowski



Experimental designs define an arrangement for producing data in which a treatment or
treatments are ai)plied. Criteria have been constructed to compare experimental designs and
to find ifnesiL designs among a class of designs used for an experiment. Optimal design theory
is a methodology that finds these best designs. Even if an applicable optimal design éannbt
be found, the optimality criteria can provide a measure of the a._dequacy of any design under
study.

The experimental design and response model can be characterized by matrix notation.

A design matrix X displays & factors (21,23, ..., ) for n experimental runs. This matrix is

given by
11 ®42 ... Typ
T T2 ... Ty
Xpxt = - . :
Tnl Trz ... Tpk

where the i** row z;=[21, 2, ..., 2:4] represents one experimental run. [19] The set of values
the factor can assume define an experimental design region X, For convenience, the factors

are centered and scaled. The centered and scaled j* factor in the ¢ experimental run is

| % = ﬁ{-gi—') where R= range of the z; and = mean of the z; (t=1,2,...,k). When the
2 .

factors are centered and scaled in this manner, the following experimental design regions can

be defined;

- Hypercube in R*: Hi= {(z1, %2, ..., 71) | l2:] < 1}
. k
- Hypersphere in R¥(of radius ) Skr = {(21,22, ..., 1) | Za:f < rth
_ i=1
For many designs, the centered and scaled points can be identified as barycenters, A

barycenter of depth w for 1 < w < % is a point with w coordinates equal to 0 and & — w

coordinates equal to 1. The set of all barycenters of depth w is denoted Ji(w). The set of

- factorial points is given by Ji.(0) with each point of the form (%1, 2,00y g) = (£1,£15..., £1)
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and the set of center points is given by Ji(k) with each point of the form (zy, 23, ..., 21) =
(0,0,...,0). [10} Representing an experimenta] design as a design matrix X, defining the
experimental design region X', and considering sets of barycenters of depth w Ji(w) will be

useful when studying the design criteria.

The response Iﬁodel for the e#perimenta,l design is given by an1=_ank By T &1
where Y is a vector of responses, X is the design matrix > X C X,0isa Vectc;r of unknown
parameters, and ¢ is a random vector of errors 3 e~ (0, ¢2I). [18] The experimental design
problem consists of finding estimates of the unknown model parameters. It will be assumed
that the design matrix is full column rank (r(X) = k). By the Gauss-Markov Theorem,
the best linear unbiased estimator of 3 is the least-squares estimator b. [18] This gives the
fitted modél _];_'=XQ. It is desirable to aquire estimates which have small variance, and v;rhich
minimize the variance of the predicted values ¥, The variance/covariance matrix is given by
Var(b)=0?(X'X)™', the prediction variance is given by Var(Y)=c2X (X'X) X", and the
standardized prediction variance is given by d(X)=2%% Var(¥). [1] Criteria will be defined

that focus on minimizing Var(b) and d(X).

A variety of criteria have been defined for choosing a design. The choice of criterion will
affect the type of design that is determined to be optimal. The criteria developed in this
analysis are related to the X’X matrix which characterizes Var(b) and Var(Y). Supposing b

is the vector of least-square parameter estimates, then the 100(1 — a)% confidence ellipsoid

for 8 is given by (8-b)(X'X)(8-b) =K, where K, is a constant that depends on «. [18]

Box and Draper consider D,A,and E optimality in terms of the eigenvalues (A1, A, ..., Ax) of

(X’X)"L. These criteria are:



k
- D=X'X|= H A7 which measures the volume of the confidence ellipsoid.

i=1
k

- A=trace(X'X) = - A; which measures the nonsphericity of the confidence ellipsoid.
- E= 1112?&}% A; which m(;:slures the nonsphericity of the cdnﬁdence ellipsoid.
The G-criterion deals with the maximum prediction variance over the experimental region
X where G= max Var(Y). [6] In this study, the D and G criteria are of primary interest
and will be further developed.

In general, optimum designs do not have equal weighting of points in the design. The
weighting scheme for the points form a probability measure ¢ on the design space X. The
design space is a class of subsets of S where § is an arbitrary set of points. The design space
is a field if

1) SeXx

2) ACX = A€ X VYclasses AdDAc S,
3) A, BEX = AUBEX Vclasses A and B 5 A BeS,

A set function is a real-valued function defined on the field X. A set function ¢ can be
deﬁnedl as a probability measure on X if

1) 0<EA) <1 VAex

2) {B)=0, &Sy =1

3) If Ay, As, ... is a disjoint sequence of sets in X and if UA,- € &, then

U = e,

If & is a field and ¢ is a probability measure, then X is a support for ¢ if {(X) = 1. [2]

i=] :

A continuous measure assigns probabilities to a continuum of points whereas the discrete

- measure assigns probabilities to a countable number of points. For example, consider a
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discrete measure £. If A is the class of points zy, 2, ..., Z,, then the probability measure for
A is given by ¢(A) = iw,- where A € X. [2] Continuous a,nd discrete measures will both
be of interest for chos:j;l supports. However, an applicable experimental design requires a
finite set of points.
The discrete measure ¢ can be expressed as
¢ = (:cl Ty ... a:n)
W We ... Wy

where @1, x3, ..., z,, are distinct points in X’ with associated weights wy,wy, ..., wn. Since ¢ is a
discrete probability measure Jpb(de) =30 wi=1and 0 < w <1Vi [1] A continuous
design is one in which w; € [0,1] V4. An exact design is one in which w; € [0,1]N Q V 3.

For instance, an exact design for n trials on # distinct points can be expressed as

(2 % )
2 on n

where r; € Z for i = 1,2,....n and 2oes T =n. [1] For an exact design, the proportion of
points at ; can be collected, but for a continuous design the proportion of points aﬁ; Z; may
be impossible to collect. For example, it is not possible to collect a proportion of points at
z; if the associated weight is w; = —‘{l—g Such a value for w; is possible for a continuoﬁs design,
but not for an exact design. Continuous designs are useful since they make the calcula,ti-on
of optimum designs possible. If one or more w;s are obtained such that «; ¢ [0,1] N Q then
7 € [0,1]NQ is selected which approximates w; in thé continuous design. This approximation
yieids an e);act design, for which observations can be collected at the specified proportions
of ;.

The moment matrix M(¢) for a design £ is a generalization of the matrix X'X. The

X'X matrix assumes each point in the design has equal weight, while the M (€) matrix does
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not assume an equal weighting scheme. The matrix M (£) has elements m;;(¢) 3 mi(€) =
Sy fi(=) _f}(:r:)é‘(da.) where f;() is a function of the design points. Let f represent a known
k x 1 vector of continuous functions defined on £ Let f(z) denote the column k-vector
with components f;(z) with the g-variable vector (21,22, ..., 24). The normalized prediction
variance is given by d(z,£) = (f(@)Y M~ (€)(f(z)). [11] The moment matrix-a,llows the
optima.iity criteria to be generalized to unequal weighting of the design points which may be

necessary to obtain an optimum experimental design.

Using the design measure ¢ and the moment matrix M (€), an optimal design £* can
be defined in terms of the D and G criteria. A D-optimum design é* maximizes | M (£)]
or, equivalently, minimizes |M~(¢)] for nonsingular M (€). Thus, the D-optimum design
minimizes the volume of the confidence ellipsoid for the parameter vector 8. For any arbitrary
design ¢, a D-efficiency is deﬁned by Dess = IJA%)% The D-efficiency measures how
efficient any point in ¢ is relative to any point in £*. [1] Secondly, a design ¢£* is G-optimal -
if m{im;lgea:l))( d(z,€) = max d(z,£") where d(z,€) is the standardized prediction variance with
respect to the design measure £. Hence, a G-optimal design will minimize the maximum
prediction variance. For any arbitrary design ¢, the G-efficiency is defined by Geps = %&"%.
[1] Therefore, D and G optimality have been defined from the criteria using the design

measure ¢ and the moment matrix M(¢).

The Keifer-Wolfowitz Theorem demonstrates the equivalency of D and G optimal de-
signs. For nonsingular M(£), the Kiefer-Wolfowitz Theorem states conditions 1), ii), iii) are

equivalent:

i) € is D-optimal



i) £ is G-optimal
iii} gaea{%:d(m,‘f*) =k
where k=number of parameters in the model. [13]
The results of the Kiefer-Wolfowitz theorem can be used to establish a procedure for
finding an optimal design. This procedure can be outlined as follows:
1) Numerically find weights tq ass-ign sets of points that. will maximize |M(£)].
2) Construct a design (£} with these weights.
3) Show that the chosen weights for (¢') satisfy max d(z, &) = k.
By the Keifer-Wolfowitz Theorem, ¢’ is G-optimal by condition (ii) and ¢ is D-optimal
by condition (i). The difficulty in this procedure is the determination of the weights that
maximize |M(£)|. A general method for finding these weights will be considered for the
design regions of the hypercube and hypersphere in R
For the hypercube Hy, the design xiveights can be determined by considering a support
consisting of subsets of barycentric points. From the Kiefer-Wolfowitz Theorem,
I;le{iix d(z,£*) = k for an optimal design £* where £ is £he number of parameters in the model,
The maximum value of the standardized prediction variance must occur at some subset of

points in the design region which can be represented by barycentric points. Farrell, Kiefer,

and Walbran [9] establish this with the following theorem.
3

‘Theorem. The set of barycentric points T (71,02, 73) = UJq(jg) support a symmetric
i=1
optimum design for quadratic regression on H, iff

-for2_§q55:j1:0,jg:1,25j3§q

-foqu()':j1=O,j2210r2,3§j3Sq.
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Among the sets specified by the theorem, the smallest number of points is 1 + ¢297* + 2¢
which is given by the set 7(0,1, ¢). [9] The requirement of a symmétric optimum design can
be satisfied by finding a group of transformations G for which the class of design measures
is G-invariant = {(gA) = £(A) Vg € G, A € X. This transformation can be used to express
the function d(:l:,. £*) as a symmetric polynomial in terms of a2, 22, , z2. [9]

Thus, it is necessary to find three weights wi, wa, w3 to assign to the sets of barycentric

points Jg(gq), Jo(1), J,(0} where w; is constant for all points in Jy(2). For a D-optimal de-

| sign, these three weights need to maximize [M(£)]. Assuming a symmetric design, consider

Flu,v) = |M(£)| where

w1 [ [ o155

=0

o) = [ atattan) =y e =a=iz1)

i=0 q(q - 1)
where 2;=0,1,-1. [10] The values of u, v need to be solved for numerically using the process:
1. consider log|F(u,v)| =L

oL oL
2. find 37, 35,

2L _

8L _
3. set 32 =0, 5 =

4. solve the system of 2 nonlinear equa.tioné defined in (3)
5. verify a maximum is obtained.

The values of u(w) and v(w)-are substituted into M(w) which has the general form

1 h 0 0
BOH 0 0
M{w) = 0
0 0 0 olgen
2

where



- I, is the identity matrix of order r '
- his the rdw g-vector with all entrieé U
- H has diagonal entries u and off-diagonal entries v, ie. H = (u — v)] 4 vJJ'. [10]
Using M(w), max d(z,£*) is calculated. If max d(z, &)=k, then an optimal design has been
obtained aé indicated by the Kiefer-Wolfowitz Theorem.
For the hyper(;ube H, using a second—order polynomial in q factors, the optimal weights

wi, Wz, wy assigned to the sets of barycentric points J,(g), J4(1),7,(0) are given in the following

table. [1]

Design Weights

q i g g

2 0.096 0.321 0.583
3 0.066 0.424 0.510
4 0.047 0.502 0.451
5 0.036 0.562 0.402

Thus, each factorial point in J,(0) has weight 50> cach facecenter point in J,(1) has weight
137 and weight w, is given to the center points in Jo(0).

In order to find the optimal weights for £* on the unit hypersphere Sq,1 a continuous
measure { must be examined. Reasonable approximations to this design £ will be considered
which are implementable and near optimal. For a model of degree 2 (m=2), weight o =
G-JrT}g(qTZJ is given to the center point, and weight § = 1 — « is given to the boundary of X.
[9) For m=3, the optimal weighting scheme considers two parameters p=radius of the sphere

{p < 1) and = measure given to the points spread uniformly over the sphere. Using these
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parameters, the optimum weights 8 and 1~ 5 can be found by maximizing log [M(£)] where
log |M(€)] = C; + 24108 p + (4 + 1) ogl8(1 — A)(1 — 27
FEBOD log (1 — ) 4 1) + Leta= logl1 _ gy | g9
and C, is a constant depending on ¢. [9] A'magimum may be found by simultaneously
solving g%%ﬁs_n = 0 and ﬂ%pﬂ@[ = 0 for the parameters 8 and p. For m > 4, the same
approach can be used, .but it i3 more difficult. [9]

Near optimal discrete measures ¢ can be defined on the factorial and star points on

the unit-sphere. By the Kiefer-Wolfowitz Theorem, the maximization of the standardized

variance must occur at points in the design region. This discrete design region can be
1'ep1'esent;ed by factoriél points (:1:71_‘;, :i:ﬁ, vens :1:716—) and star points (0,...,41,...,0). Every
factorial point has weight s and every star point has weight %. Thus, the total weight for the
factorial points ié o and the total weight for the star points is # where a+ 8 = 1. [9]. Center
points can be added by thg experimenter with the design weights adjusted accordingly. The
moments for A(£) are given by

.
q(q +2)

[t =1, [etgan=—2 [ state(a) =

(g +2)

where all other odd moments less than four are zero. The weights o = 5 and B = q—(ql_]_2—)

satisfy the above equations and meet, the constraint o - B = 1. [9] The number of points for
this design is 2¢ (star points)+ g (fa,ctolria,l points).

Optimality will be considered for two classes of designs whicﬁ are commoﬁly used: the
Central Composite' designs and the Box-Behnken designs. Efficiencies based on a quadratic
model with & terms and ¢ scaled variables —1 < 2 < 1 on .the hypersphere or hypercube

will be analyzed. This analysis will demonstrate how close these designs are to the optimal
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design. All points in these designs have equal weight, so the design ¢ can be represented by

1 &y ... Iy
E=11 1)
S PR

The Central Composite design consists of points from two level factorial or fractional
factorial designs, star points, and center points. The standard composite design for three

factors (g = 3) with one center point has the design matrix

1l 41 41
+1 41 -1
41 -1 41
+1 -1 -1
—1 41 41
-1 +1 -1
-1 -1 +1
Xisxa= | -1 -1 -1 [8].

 +
coococo g
.
g
=

0 0

- Different composite designs can be constructed by vatrying the number of center points,

changing the star point distance (a), using different fractional factorial desigﬁs, and repli-
cating desigl; points. Among implerﬁentable designs, there is a design that maximizes 1X'X|.
This best implementable Central Cﬁmposi,te deéign will be compared to both the optimal
design and the optimal Central Composite design for a specified number of factors.

For Hg, the star point distance is 1 (e = 1). The best implementable Central Composite
designs are quite close to the. D-optimum design. For ¢ = 3, the 14 point Central Composite
design (no center point) has a D-efficiency of .976 and a G-efficiency of .893. For ¢ = 4, the
24 point Central Compostte design (no center point) has D-efficiency of .936 and G-efficiency

of .811. [17] As the number of center points increase, the G-efficiencies decrease. [3] For
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¢ = 3, fractional factorial points can be used to reduce the number of points in the design
without reducing the efficiencies, However, the D and G efficiencies decrease as ¢ increases. -

[17] (see Table 1)

For 844, the star poiﬁt distance is o = /@ For ¢ = 2, the D-efficiencies are 9862, .9964,
9691 and the G-efficiencies are .6667, .9600, .8727 ﬁith 1,2, and 3 center points respectively.
For ¢ = 3, the D-efficiencies aré 9914, .9961, .9763 and the G-efficiencies are b667, .9459,
8903 with 1,2, and 3 center points respectively. [17] Using two center points often resulted

in large increases in G-efficiencies since this proportion of center points is closer to the weight

given to the center of the design region in the optimal design. The D-efficiencies are quite

close to one for ail ¢, while the G-efficiences vary widely depending on the number of center

points. [17] (see Table 2)

Implementable Central Comiaosite Desigﬁs can also be compared to optimal Central
Composite designs. This com‘parison will be restricted to Hg, because optimal Central
Composite Designs on S 4 lack practical significance, particularly for k > 4. [16] Optimal
weights w),wy, ws assigned to the ba;rycentric points Jo(g), J4(1), J,(0) can be found by

numerically solving

= (o 2) D2 (w0 2) 002 )

3
subject to the constraints w; > 04 =1,2,3 and Zw; = 1 where n is the number of points

t=1

“in the design. The solutions to this equation are given in the following table up to 5 factors.

[16]

11



—

Design Weights CCD

q wy o W

2 0.096 0.321 0.583
3 0 0.345 0.655
4 0 0.292 0.708
S 0 0.253 0.747

The D-efficiences between the best implementable and the optimal Central Composite de-

signs are quite similiar. (see Tables 1 and 3) Although the D-efficiencies of the optimal

Central Composite designs decrease as g increases, these efficiencies remain relatively high.

This indicates that optimal Central Composite designs and implementable Central Compos-

ite designs are near optimal on Hy. [16]

The Box-Behnken design consists of barycentric points. For q = 3, the barycentric points

are J,(1) and Jy(g). The standard Box-Behnken design for three factors and one center point

has the design matrix

Xiaga = | =1

L 0

Different Box-Behnken designs are constructed by using barycentric points of different depths

12

+1 0 7
-1 0
+1 0
-1 0
0 41
0 -1
0 41
0 -1
+1 +1
+1 -1
-1 +1
~1 -1
0 0

[5].



for larger ¢, varying the number of center points, and replicating the design points. Among
these designs, there is one design that maximizes |X’'X | among all implementable Box-
Behnken designs. This best implementable Box-Behnken design will be compared to the

optimal design for a specified number of factors.

For Hg, the Box-Behnken design points do not fill in the extremes of tllle design region
since it does not contain the set of factorial points (J4(0)). These points lic on the corners of
the design region. Thus, on the hypercube, the D and G efficiencies of Box-Behnken designs
would not be as close to optimal as those for the Central Composite designs. Therefore,

these désigus should not be used in practice for this region,

For Sq,1, two center points are included yielding the best Box-Behnken design. However,
the addition of center points does not significantly lower D and G eﬂicieﬁcies. For ¢ = 3, the
fourteen point Box-Behnken design has a D-efficiency of .9653 and a G-efficiency of .7143.
For g = 4, the 26 point Box-Behnken has a D-efficiency of .9992 aﬁd a G-efficiency of .9890.
[17} The efficiences are quite close to one for most values of g, but the G-efficiencies do vary

for some values of g- [17] (see Table 2)

The Central Composite and Box-Behnken designs are quite efficient. If the design region
is the hypercube, the efficiencies decrease as ¢ increases, but if the design region is the
hypersphere, the efficiencies remain relatively high.  Thus, these designs are good desiggs
to use in practice according to the D and G optimalits’ criteria. [17] However, variations
of these designs or other designs may be of interest to experimenters.. These expérimenters
may value other design criteria such as orthogonality, rotatability, replication, lack of fit,

and internal estimates of error. Whatever design is chosen, the D and G optimality criteria

13



can be used to assess how close the chosen design comes to minimizing the volume of the

confidence ellipsoid for the parameter estimates and minimizing the maximum prediction

variance for the specified model.
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416 toble | ' JAMES M. LUCAS

Taurk: 2—Deaipn Comparison on a Hyperaidie

No. of HNo. of Ho. of a /-
Factors Tarms Points Basign . Mg} D-aff Goaff max’
3 10 ‘.- D-Optimm .57 x 1073 100.0 100.0 -
-3 '
14 Best Composite .4%) x 10 : 97.6 89.3 .80
13 Hoke D, 2432 x 1073 97.1 65.1 1.18
10 Hoke D 104 x 1c_4 B4.3 - 14.3 71.00
10 Bax-Drapef -185 x 1073 g89.2 54.3 1.84
) 11 2943 star pts, .32% x 10 944 €0.6 1,50
4 15 - D-Optitum .216 x 1074 100.0 100.0 -
24 Best Conposite 1804 x 1073 93,6 a1.1 .77
42 Pesotchinaky DF (13 x l0_4 95.7 - 82.4 .43
4 Pasotchinsky DB .44 x 1075 69.9 - 67.6 .65
19 Hoke D -170 x 1073 84.4 .9 2.48
15 Hoke D 2795 x 1028 80.2 5.1 - 2.56
15 Box-Drapsf . -369 x 10 76.5
5 21 - D-Optimum .635 x 1076 100.0 100.0 -
42 Dest Composite .684 x 1077 89,9 61.4 .81
26 Baat Composite 328 x 10_6 86.8 7.8 1.04
50 Pasotchinaky Dp 40 x 10_¢ 97.8 87,1 - .48
a4 Peactchinsky DB 118 x 1075 94.2 7.8 .32
26 Hoke D -702 x 1077 90.0 71,7 1.13
21 Hoke D -505 x 1077, 88.7 52.5 1.91
21 Box-Drapef | .339 x 10 62.6
6 28 - D-Opt imum ,154 x 20”7 100.0 100,06 -
a4 Bast Composite -268 x 1073 6.7 63,9 1.00
T | Halimov .21 x io_, 93.1 65. 7% .48
66 Pazotchinsky DP 14 x 10_8 99.7 94.9 .45
100 Pesotchinsky Dp 54 x 10_10 96,3 83,8 33
24 Hoke D - -583 x 10739 81.9 59,2 1.39
28 Hoke D -473 x 10730 81.3 4.0 2.17
28 Box-Drape 932 % 10 50,9
7 36 - D-optimum 2317 x 1077
78 Best Composite .105 x 10731 #5.3 “.re 1.03
113 Pesotchinsky DB 213 x 10 44 97.6 87.& .36
43 - Tioke D, .122 x 10724 70.7 . 46.9 1.79
36 tioke D! -104 x 10714 70.4 39.0 2.86
36 Box-Drapef .648 x 10 4.7
s 4s - D-Optimum .568 x 1071 300.0 100.6 - --
80 Bast composite -248 x 30°14 84.2. 4.4 1.19
51 ficke D¢ -593 x 20731 0.0 6.8 2.31
- Hoke D -303 x 10_21 s9.8 3s.0 2,63
45 Box-Drapad .922 x 10 3450 :
9 55 - D~Opt ims .900 x 10733 100.0 100.0 e
146  Best Composite .294 x 10737 82.9 T441e .85
64 Hoke D, <531 x 10733 50,74 20.9 2.98
8 Foke D <463 x 10723 0.6 29.4 3.40
55 Box-Draped . .219 x 10 28.9¢
10 66 - D-Opt Laxm .128 x 1044 100.0
148 Best Componite .566 x 10729 83.0
76  Boke D .780 x 10733 . 43lpe
66 Foke D +683 x 1033 42.9
" 86 Box-Drapet .732 x 107 24.6¢
11 7 - D-Optimum .164 x 10716 100.0
) -23
151 Bast Composite 681 x 10” 2.8
89 Hoks D¢ -15¢ x 10739 36,6+
78 Hokse D 2136 x 10_6, 6.6
78 Box-Drape$ .279 = 10 21,1+

*Indicates a design thai: 214 not achieve an efffcifancy as high as the Iower bound given in
formula 1.
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414 . _ JAMES M. LUCAS

Teble 2

Tante t—Design Compariton on A k-aphere
¥o. of KHo. of No. of ' Number of

Factors Terpa Points Dasign ﬂﬁ} D-aff G-aff dn“/n Canter Points
2 6 - D-optimum 2.62 x 10°* 100,00 . 100.00 - ]
: 7 Uniform shell  2.58 x 100% 99,78 85.71 1.60 1
8 2.31 x 1024 98.00 90.00 .83 2
3 1.71 x 1074 93.20 80.00 .83 3
3 Composite 2.41 x 1074 98.62 66.67 1.00 1
10 2,56 x 1004 99,64 96.00 .62 2
| 1 _ 2.17 x 10 96,91 87.27 .62 3
3 10 - D-optinum 2,52 x 10" 100,00 100,00 - -
13 Uniform shell 1.86 x 1073 37.00 76,97] 1.00 1
14 = Box-Behnken 1.77 x 10_9 596.53 T1l.43 i1.00 2
is 1.33 x 1073 93.82 66.671 1.00 3
15 Composite 2,31 x 1074 99.14 66,67 1.00 1
16 2.42x 1073 961 94.59 .66 2
17 - 1.98 x 10 - '97.63 89.03 .66 3
4 15 - D-optizum 7.50 x 10717 100.00 100.00 - -
25  +Composite 6.68 x 10737 92,23 60,00 1.00 1
26 Box-Behnken 7.42 x 10711  99.92 98.90  .s8 2
27 . 6.32 x 10717 seles 95.24 .58 3
21 Uniform shell 2.80 x 10011  93.64 71.43  1.00 i
22 2,79 x 1073 93,61 75,76 .90 2
23 2.15 x 10 91,99 72,46 .90 3
5 21 D-optinum 4.44 x 10727 100,00 100,00 - -
43 compoaita " 3.30 x io:ﬁ} 3860 48.84¢ 1,00 1
i .. , 44 : 4.08 x 107 99,60 7.63 .54 2
‘;‘"“" derga bt to e a5 3.82 x 10°27  99.28  85.96 .54 3
Hiula el . .
27 Composite 3.9 x 10727 9843 7778 1,00 1 .
28 (Half Rep) 2.97 x 1072]  g8.10  87.64 .88 2 .
— 29 2.13 x 10 96,57 B4.62 .86 3 (
' 31 uniform shell 5.32 x 10725 90.39  67.74 1.00 :
32 L 5.46 x 10738 50050 67.02 .98 2.
3 4.29 x 10 89,47 64.99 . .98 3
41 Box-Behnken 2.87 % 1o:§; 97,95 51,22 1.00 1
42 3.47 x 10737 s0.63 90.91 .55 2
rt 3017 x 10237 984k 88,79 .55 3
6 28 D-opt inus 3.63 x 10749 100,00 100,00 - -
45 Componite 3.20 x 20742 9055 62.22 1,00 1
48 {Half Rep) 3.45 x 10780 9903 96.98 .63 H
47 2.84 x 10 99.13 24.8% .63 3
_ 43 Uniform shell 8.46 x 10742  87.44  65.12 1.00 1
don™t AGYE oadmns difrens 44 . 8.89 x 10,3  B7.59 €5.18 .98 2
. b oh 45 . T.11 x 10 86.90 €3.73 .98 3
fesveiits ol madat: 49 mox-Behnxen  6.77 x 10741  s418 s74 100 1
50 7.69 x 10787 34.61 €7.20 .83 2
51 - 6.62 x 10741 . a4in1 65.88 .83 3
54 _ 2.67 x 10 91.11 62,22 .8 s
) 36 D-optimum 3.01 x 1073% 100,00 200.00 - -
79  Composite 2,01 x 10736 os.88  as.s7e 1.00 1
a0 {Half Rep) 2.56 x 10735 99.ss 84.72 .53 2
a1 ' 2,45 x 10238 59,43 . e3iem 53 3
Bieeas 95 ¢ .89 x 10 98.72 91,29 .42 3
- pubvst "3 -
; S7  Uniform shell B.05 x 10753  @4.83 63,16  1.00 3
58 - 8.61 x 10733 €4.99 62,07 1.00 2
59 6.98 x 10 64.49 61.02 1,00 3
o?lnﬂ\&““i . -56
{ fleuney - 57 Box-Bahnken 2,74 x 10_o. ~ .99.74 63,15 1.00 1
® 58 2,93 x 10 .. 99,9 99.31 .62 2
aat —uwes dir1ge Thesey 59 2.38 x 10035 - 99.38 87,63 162 3
| 62 _ 7.58 x 10 96.38 92,90 62 6
[ 45 D-opt imum 1,94 x 10773 100,00 100.00 - -
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