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1. INTRODUCTION

The treatment of contaminated groundwater, a major undertaking in the U.S. and abroad, is
accomplished with a wide variety of technologies. One of the most common and inexpensive techniques uses
a vapor extraction system to remove air from subsurfaces laden with hydrocarbons. While effective and
relatively efficient, this technique produces a contaminated air stream which requires treatment before the
air can be released to the atmosphere.

In a collaborative study, researchers at Montana State University and the Orange County Water
District in Califomia investigated characteristics of biological soif vapor treatment in a biofilm reactor. The
soil vapor can contain many different hydrocarbons. The investigators were particularly interested in the
effects of various hydrocarbon combinations on the biotransformation of those hydrocarbons. An extensive
data set was collected and used to develop an empirical model of the system. The model can aid in the

design and scale-up of tuture systems.

2. DATA

The data were based on samples removed from a vapor-phase biofim reactor kcated in Orange
County, California. The purpose of the experiment was to obtain information about the degradation rates for
six hydrocarbons: hexane, benzene, trimethylpentane 2-2-4, toluene, octane, and p-xylene. The six
hydrocarbons couid simultaneously flow into the reactor; the loading rates were controlled by the operator.
After setting the loading rates of the hydrocarbons, the operator would wait until the system reached steady
state, then measure {i} the associated degradation rate for each hydrocarbon and (ji) the CO, production.
The operator also recorded six relevant physical characteristics of the reactor: influent humidity, pH balance,

differential pressure, redox potential, conductivity, and reactor temperature. Each setting of hydrocarbon



loadings and associated measurements constitutes a "case." The data set for the total experiment comprises
a large number of cases, each case consisting of the response variables {degradation rates and CO,
production) and explanatory variables {the six hydrocarbon loading rates and six physical measurements).
Don Phipps of the Orange County Water District collected the data. He sent the data to the Center
for Biofilm Engineering on a computer disketie in the form of Symphony™ spreadsheet files. His goal was
to reach conclusions about the effects of the various hydrocarbon loading rates and physical characteristics

on hydrocarbon degradation rates and CO, production.

3. BACKGROUND

Don Phipps conducted initial stafistical analyses in Orange County. He sent the resuits of his
analyses; viz., multiple finear regression models {see Figure 1 for a hexane model exampie) and partial .
comrelation plots (see Figure 2 for a hexane mode! example) for each of the hydrocarbon degradation rates.
He had chosen to eliminate the intercept term since hydrocarbon degradation rate should be zero if that same
hydrocarbon’s loading rate is zero. He wanted to quantitatively interpret the estimated coefficients for the
degradation models by observing the size and sign of the coefficients. The interpretations seemed
complicated so he decided to seek the advice of a statistician, specifically, Dr. Marty Hamitton. After
reviewing the data, Dr. Hamifton decided that more extensive statistical analyses were required. Atthat time,

| was hired to do those analyses.

-4, INITIAL ANALYSES

4.1 Transkating the Data

After translating the data ﬁlgs into a form acceptable to the statistical software, | repeated the multiple



regression analyses to see if | could reproduce Don's results. This effort provided confidence that the data
matrix had been translated comrectly and had the right labels attached to the data columns. During the course
of these analyses, | discovered that Don's modsls were not based on ali the data. it tumed out that his

computer program unintentionally deleted the first case during each analysis.

4.2 Choosing the Relevant Subset of the Data

I'broke the data into three time period groups as suggested in the material Don included with the
data. Appendices A, B, and C comespond to the three time periods: period A which represents operation
using only indigenous nitrogen, period B reprasenting the addition of 1.8mM of NH4C! 1o the reactor, and
period C which contained continually declining nitrogen.

The plots for period A indicated large correlations between the loading variables (Figure 3). Dr,
Hamifton and | judged that it would be impossible to separate the effects of the different loading variables.
The plots for period B showed that each loading variable varied over a narrow range (note the axes of Figure
4). We judged that over such narrow ranges, the response variables did not change enough to provide
modelling information. For these reasons, we chose to do the analyses only on period C data. In time period
G, different loads were tumed on and off at different times, resulting in less collinearity than for period A (see

Figure 5a). The statistical analyses in this report pertain only to the 291 cases of period C.

4.3 Important Characteristics of the Data

After plotting the data and attempting to model the degradation rates with linear explanatory variables,
| discovered some important characteristics of the data for period C. First, the scattemlots for two

explanatory variables at a time indicated that several of the variables were highly correlated (see Figure 5a).




With multicollinearity present, it is nearty impossible to quantitatively interpret coefficients of models. A
correlation métrix (see Table 1 below) also shows the strong amount of cotrelation present in the explanatory
variables, particularly between benzene, toluene, trimethyipentane, and octane Ioa_ds_. Secondly, scatterplots
of the response variables by the explanatory variables (see Figures 5b and 5¢} presented some curvature,
which indicated that a quadratic model was probably more appropriate than a model in which the explanatory
variables are entered in lingariy. Finally, an intercept is possible because the clients are interested in

modelling points away from the origin, and they are not interested in the points at or near the origin.

Table 1 Correlation Coefficients for the Hydrocarbon Loading Rates

LOADS Hexane Benzene  Toluene T™P Octane  P-xylene

Hexane 1.000 | -046 -029 -022 | -019 -408
. Benzene 1.000 796 796 797 .360
o Toluene | - 1.000 79% | 800 355
T™P 11000 | 801 254
Octane L -] 1,000 358
Paylene | 1.000

5. MULTIPLE REGRESSION MODELS: METHODOLOGY
My objective was to construct mutltiple regression models for each of the six f;ydrocarbon degradation
rates. The models provided a means for determining which hydrocarbon loadings affected each degradation
rate. -.
Dr. Hamitton and | conducted the statistical analysis on this project in consultation with Dr. Warren

Jones. The statistical softwars packages S-plus and SAS were used to complete the analyses.



9.1 _Initial Discoveries (,\
Atter studying the plots and initial analyses, four decisions guided the subsequent modelling effort.

1. If a hydrocarbon boading rate is zero, or nothing is going into the system, then none of that
hydrocarbon should be degrading and the comesponding degradation rate should be zero. A model
for hydrocarbon degradation is helpful only to the extent that it describes degradation when there is
a positive loading of that hydrocarbon. Therefore, | did not use data points where the hydrocarbon
loading rate was zero when modelling that hydrocarbon's degradation rate. For example, in
modelling hexane degradation (see Table 2 on page 12), all cases where hexane Ioéding was zero
were removed from the data set and the remaining 247 cases were used in the modslling process.
The same steps were used for the other five hydrocarbons. Thus, having an intercept tem in the
models was possible.

2. Dr. Jones explained that the six hydrocarbons could be split into two classes: the aromatic class

—
2 ;

consisting of benzene, toluene, and p-xylene, and the aliphatic class containing hexane,
timethylpentane 2-2-4, and octane, In interpreting the models, | gave Special attention to the effects
within and between these two classes. For comparison purposes, | also decided to build additionai
models that used total aromatic degradation and total aliphatic degradation as response variables.
3. When modelling the degradation of a single hydrocarbon, | had included loading interaction terms
and squared temms, which meant there was a total of 33 potential explanatory variables. Uﬂirﬁately,
we decided that it was not necessary to include in the model all possible pair-wise interactions among
the six hydrocarhon loadings. Although base models for total hydrocarbon degradation and CG,
production included 33 explanatory variables, the base models for each hydrocarbon degradation

contained only the five interactions involving the hydrocarbon being modelled. For example, in the



modelfor hexane degradation, | only considered the five pair-wise interactions of hexane loading with
each of the other hydrocarbon loading rates. |

4. We discussed the potential problem of a fime lag in the degradation rates and CO, production. By
the nalure of the experiment and the time allotted between measurements, we decided that there
shouid be no time effect in the degradation rates, but thera was a possibiiity of a time effect in CO,
production. To test this possibility, | rearkanged the data so that CO, produchon would be lagged
behind the other vanables by n time measurements. Then | graphed the correlation vaiues for n
(values 1 to 5) and CO, production (see Figure 6). The graphs demonstrated no obvious lagin the

CO, production responses. Therefore, our modsls do not include any time lagged variables.

5.2 Models
The initial models contained the same twelve Ilnear explanatory variables that Don Phipps included

in hlS regressnon analysis. Those twelve variables were the followmg

Loads Physical Traits
Hexane : . Influent Humidity
Benzene Differential Pressure
Trimethyipentane 2-2-4 ~pH

Toluene Redox Potential
Octane _ Reactor Temperature
P-xylene Conductivity

Curvature in the degradat{on VErsus ioadrng variable plots tsea Flgure 5b) indicated that a quadratic
model should be consrdered in modeliing the degradatlon rates. This led us from the original Irnear model
with twelve explanaory variables to 33 potential explanatory varibles. The 33 explanatory variables
contained an additional six variables that were the squares of the hydrocarbon loadings and fifteen additional

interaction variables. The interaction variables were developed by multiplying each hydrocarbon loading by



the other five hydrocarbon loadings. By including these extra variables, we created parabolic models that (/-\

comrespondad to the curvature indicated in the scatterplots. The 33 variables were as follows:

Loads Loads Squared Interactions Physical Traits
Hexane Hexane Squared P-xylene by Hexane  Influent Humidity
Benzene Benzene Squared P-xylene by Benzene Differential Pressure
TMP 224 TMP Squared P-xylene by TMP pH
Toluene Toluene Squared P-xylene by Toluene  Reactor Temperature
Octane Octane Squared P-xylene by Octane  Redox Potential
P-xylene P-xylene Squared Octane by Toluene  Conductivity

Octane by TMP

Octane by Benzene

Octane by Hexane

Toluene by TMP

Toluene by Benzene

Toluene by Hexane

TMP by Benzene

TMP by Hexane

Benzene by Hexane

The 33 variables were used in models for total hydrocarbon degradation and for CO, production.
But when modelling the degradation of a single hydrocarbon, we reduced the 33 potential explanatory
vanables to 23 variables: the six hydrocarbon loads and their six squared terms, the six physical
characteristics, and the five interactions of the loading for the hydrocarbon being modelled with the other five
ioading variables. Hence, the 23 variable model became our base modl for single hydrocarbon degradation.

For each of the single hydrocarbon degradation rates, we used backward, stepwise, forward, and R-
square selection procedures in the SAS statistical package (see Littell, Freund, and Spector, 1991} to reduce
the 23 variable base model to a smaller model, designated as the "final mode!.” The backward selection
procedure begins with the 23 variable model and removes variables, one at a time, that have the least
amount of influence on the model for the response variable. The forward selection procedure begins with

no variables and then adds variables, one at a time, that have the most influence on the model. The



stepwise selection procedurs is a combination of backward and forward selection in that at each step it will
either add a new variable with the next fargest amount of influence on the model, or eliminate a variable
previously entered into the model because it is no longer needed in the model. The R-square procedure
provides a list of the best models for different numbers of explanatory variables. "Best" was based on higher
adjusted-R’ values and appropriate Mallow's Cp values. In each of the procedures, p-values for F tests and
increases in the R* values (or decreases in the residual sum of squares) were used to decide how much
influence each variable had on the model, Mallow’é Cp statistic was used to approximate the number of
variables appropriate for each model (see Myers, 1990). Mallow's Cp statistic should be close in value to
the number of explanatory variables in the model. Ses Figures 7a and 7b for graphs of the various Cp values
and adjusted-R* values that indicate how these two statistics were used to decide on the appropriate-sized
model for benzene degradation. In this example, it appears that better models for benzene dsgradation
contain about nine terms. Using the results of these automated selection procedures and considering the
associated R” values, adjusted-R? values, Mallow's Cp statistics, and plots, i selected the model that |
believed best fit the data. | also used individual variable investigation of t-test results to aid in my selection
process. If there existed two or more models that met the above criteria, | chose the model with the fewest
terms according to a hierarchical structure where linear terms were favored over interaction and squared
terms. Thus, the model chosen was parsimonious and easier to interpret,

Aithough it makes intuitive sense that a zero loading rate for a hydrocarbon should result in a zero
degradation rate, we chose not to force the intercept tem to be zero because wee are not interested in
modelling points nearthe origin. Rather, we aré interested in modelling a cluster of points situated away from
the origin, and it is reasonable for the chosen modsl to contain an intercept term other than zero.

Nevertheless, if the p-value for an intercept term was not significant (about p > .15), i forced the modl o



exclude an intercept term by using SAS commands such as NOINT and BESTRICT INFTERCEPT=0. The
latter term gives R’ values that are comparable to R? valuss of models containing an intercept. In the NOINT
cases, the R value is equivalent to calculating the squared correlation between responses and predictions

{see Freund and Littell, 1991).

6. MULTIPLE REGRESSION MODELS: RESULTS

6.1_Description of the mode! tables

There are six tables in the "Results™ section, one for each hydrocarbon degradation. Each table
contains adjusted-R” and intercept information for five different models for single hydrocarbon degradation.
Descriptions of the five types of models are as follows:

. The first is the model containing twelve linear terms and all 291 cases. This is essentially the

analysis that Don Phipps had done.

. The second modsl shows how the adjusted-R? changed when the cases where loading rate equalled
zero were removed. For example, in Table 2 the adjusted-R? for the first model containing 291 cases
is .3155. When the number of cases was reduced to 247, the adjusted-R? decreased 1o 0.1650. In
essence, the inclusion of 44 cases with zero loading doubles the adjusted-R%. However, these 44

cases are imelevant to our modelling goal.

. Next is a mode! reduced from the 12 linear variable model to fewer tems. This model for each of
the six degradations shows an increased adjusted-R?, indicating the benefit of removing exiraneous

variables from the model. In the hexane degradation mode! (see Table 2), the adjusted-R® increases

C



from 0.1605 to 0.1805.
. The fourth set of values demonstrate how the'adjusted-Rz values increased when | changed to 23
variables, indicating that the additional variables contained useful information about the degradation

rates. In Table 2, notice how the adjusted-R? for the hexane degradation model changes from

0.1805 to 0.4117,

. Extraneous variables were removed from the 23 variable base mode! using previously described
methods. The goal here was to arrive at a smaller model {the final model) that still fit the data nearly
as well as the 23 variable model. For the hexane degradation model, the final modei contained 16

explanatory variables and the adjusted-R? was 0.4167.

In the tables, N refers to the number of cases used in the model. There are a total of 291 cases,
but in modelling each hydrocarbon degradation, the cases where the loading rate for that particular
hydrocarbon was zero were removed, so N is less than 291.

In the intercept column in the tabies, a Y or N was recorded, indicating whether or not an intercept
term was included in the model. fa Y, for Yes, was recorded, a p-value associated with the intercept is also
included.

The most valuable part of the tables to the researchers at Orange County is the “Effect* section,
because it includes a qualitative analysis of the effects of our explanatory variables on the responses. The
“Effects" section of the table indicates whether or not each hydrocarbon load and physical trait

included in the final model effects the degradation rate being modelled. Reduced mode! F-tests were
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used to test how important certain variable groups were to the model. A p-value less than 0.01 indicates that
a variable, or refated group of variables, has a statistically significant effect on the degradation rate. The
adjusted-R? values in the column provided refer to the new mode! after all explanatory variables containing
that hydrocarbon load or physical trait have been removed. This adjusted-R® can be compared to the

adjusted-R° of the final mode! to see how much that hydrocarbon load or physical trait effects the final model.
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6.2 Mode! Results for the Six Single Hydrocarbon Degradations

| o - Table 2
Response: HEXANE DEGRADATION _
Model Description Adj R® Intercept
12 linear variables, N=291 0.3155 Y .3397
12 linear variables, N=247 0.1650 No
7 linear variables, N=247 0.1805 No
23 variables, N=247 04117 No
 The Final Model: |
16 variables, N=247 0.4167 No
Predictors: Hexane Load P-xylene Load Squared
Benzene Load Benzene by Hexane
Trimethylpentane Load Toluene by Hexane
P-xylene Load Octane by Hexane
Benzene Load Squared P-xylene by Hexane
Trimethylpentane Load Squared Influent Humidity
Toluene Load Squared Reactor Temperature
Octane Load Squared Conductivity
Effects of: Variabies removed New AdiR?  P-value
Hexane Hexane Load, Benzene by Hexane 0.1352 0.0000
Toluene by Hexane, Octane by Hexane :
P-xylene by Hexane
Benzene Benzene Load, Benzene by Hexane  0.2195 0.0000
Benzene Load Squared
TMP 224 Trimethylpentane Load 0.3842 0.0007
Trimethylpentane Load Squared
. Toluene Toluene Load Squared - 0.3926 0.0050
Toluens by Hexane
Octane Octane Load Squared, | 0.3810 0.0004
Octane by Hexane
P-xylene P-xylene Load, P-xylene by Hexane  0.3754 0.0003
- P-xylene Load Squared
influent Humidity s 0.4025 0.0105
Reactor Temperature 0.3908 0.0009
Conductivity | 03784 . 00001

12



Summary: Table 2 shows that hexane load, benzene load, trimethylpentane load, octane load, p-xylene load,
reactor temperature, and conductivity alf have a strong statistically significant effect on hexane degradation.
Hexane load has the most effect on hexane degradation, but this is probably because hexane load is included
in five variables. Toluene load also influences hexane degradation, but not as significantly. Influent Humidity
doss not have a significant effact at the 0.01 level.

Table 3
Response: BENZENE DEGRADATION
Mode! Description Adj R Intercept
12 linear variables, N=291 0.9098 Y .2383
12 linear variables, N=232 0.7462 No
8 linear variables, N=232 0.7506 Y .0001
23 variables, N=232 0.8267 No
The Final Model:
9 variables, N=232 - 0.8250 No
Predictors: Benzene Load
Toluene Load
P-xylene Load
Benzene Load Squared
P-xylene Load Squared
Toluene by Benzene
P-xylene by Benzene
Reactor Temperature
Redox
Effects of: Variables removed New Adi B> P-value
Benzene Benzene Load, P-xylene by Benzene  0.7638 0.0000
Benzene Load Squared
Toluene by Benzene
Toluene -Toluene Load, Toluene by Benzene  0.8143 0.0005
P-xylene P-xylene Load, P-xylene by Benzene  0.7458 0.0000
P-xylene Load Squared
Reactor Temperature 0.8116 0.0000
Redox Potential 0.7868 0.0000

Summary: Table 3 indicates that benzene load, tolusne load, p-xylene load, reactor temperature, and redox
potential all have a strong, statistically significant effect on benzene degradation. The aliphatic hydrocarbon
loads have very little influence on the rate of benzene degradation. Also, it is interesting to note that
removing alf four variables containing benzene load only slightly decreased the ¥ value.
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Table 4

Response:  TRIMETHYLPENTANE 2,2,4 DEGRADATION

Model Description : Adj R® _Intercept
12 linear variables, N=291 0.2695 Y 3524
12 linear variables, N=232 0.3196 Y 0772
7 linear variables, N=232 0.3233 Y .0001
23 variables, N=232 _ 0.5545 Y 0008
The Final Model:
7 variables, N=232 0.5597 Y .0001
Predictors: Trimethylpentane Load
Toluene Load
Octane Load
Toluene Load Squared
Octane Load Squared
Reactor Temperature

Difterence in Pressure

Effects of: _Variables removed New AdiR® _ P-value
Toluene Toluene Load, Toluene Load Squared 04484 0.0000
Octane Octane Load, Octane Load Squared ~ 0.5291 0.0002
Trimethyipentane Load . 0.0251 0.0000
Reactor Temperature 0.4922 0.0000
Differential Pressure : 0.5039 0.0000

Summary: According to Table 4, trimethylpentane load, toluene load, octane load, reactor temperature, and
differential pressure all have strong, statistically significant effects on trimethyipentane degradation. Notice
that trimethylpentane load is the most important explanatory variable in the model (see the adjusted-R?
values).
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Table 5

Response: TOLUENE DEGRADATION

Model Description Adj R intercept
12 linear variables, N=291 0.9560 Y .0100
12 tinear variables, N=232 0.9108 Y 0384
6 linear variables, N=232 0.9133 Y 0001
23 variables, N=232 0.9352 Y 0483
The Final Mode!:
7 varlables, N=232 0.9228 No
Predictors: Toluene Load
P-xylene Load
Toluene Load Squared
P-xylene Load Squared
Difterential Pressure
Redox Potential
Conductivity
Effects of: Variables removed New Adi R* _ P-value
Toluene Toluene Load, Toluene Load Squared 0.8886 0.0000
P-xylene P-xylene Load, P-xylene Load Squared 0.9167 0.0001
Ditterential Pressure 0.9169 0.0001
Redox Potential 0.9175 0.0001
Conductivity 0.8931 0.0000

Summary: Table 5 shows that loluene Joad; p-xylene-load, differential pressure, redox potential, and
conductivily all have strong, statistically significant effects on toluene degradation. The aliphatic hydrocarbon
foads do not appear in this model. As with the banzene model, removing both toluene load terms does not

drastically change the ¥ value.
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Response: OCTANE DEGRADATION

Table 6

Model Description Adj R _Intercept
12 linear variables, N=291 0.3085 No
12 linear variables, N=232 0.1429 No
5 linear variables, - N=232 0.1568 Y .000
23 variables, N=232 0.2570 No
The Final Model:
11 variables, N=232 0.2559 No
Predictors: Octane Load
P-xylene Load
Hexane Load Squared
Toluene Load Squared
Octane Load Squared
P-xylene Load Squared
Octane by Hexane
Octane by Toluene
Infiuent Humidity
Reactor Temperature
Redox
o Effects of: Variables removed New AdjR®  P-valus
Hexane Hexane Load Squared 0.2136 0.0008
Octane by Hexane
Toluene Toluene Load Squared 0.1392 -~ 0.0000
Octane by Tolusne
Octane Octane Load, Octans Load Squared  0.0003 0.0000
Octane by Hexane, Octane by Toluene
P-xylene P-xylene Load, P-xylene Load Squared 0.2133 0.0008
Influent Humidity ' 0.1752 0.0000
Reactor Temperature 0.2035 0.0001
0.1811 0.0000

Redox Potential

Summary: The information in Table 6 implies that hexane load, toluene load, octane load, p-xylene load,
influent humidtty, reactor temperature, and redox potential have strong, statistically significant effects on

octane degradation. Octane load was the mos
(see adjusted-F* values).

16

t important predictor in the model, followed by toluene load



Table 7

Responss:  P-XYLENE DEGRADATION

Model Description Adj R Intercept
12 linear variables, N=291 0.8235 No
12 linear variables, N=250 0.6392 No
7 linear variables, N=250 0.6393 Y 0433
23 vanables, N=250 0.6890 No
The Final Model:
13 variables, N=250 0.6920 No
Predictors: Hexane Load P-xylene by Hexane
Toluene Load P-xylene by Trimethylpentane
Hexane Load Squared P-xylene by Toluene
Trimethylpentane Load Squared Influent Humidity
Toluene Load Squared Reactor Temperature
Octane Load Squared Redox
P-xylene Load Squared
Effects of: Variables removed New AdiR®>  P-value
Hexane Hexane Load, Hexane by P-xylene 0.6313 0.6000
Hexane Load Squared
TMP 224 Trimethylpentane Load Squared 0.6561 0.0000
P-xylene by Trimethylpentane
Toluene Toluene Load, P-xylene by Toluene  0.6365 0.0000
Toluene Load Squared
P-xylene P-xylene Load Squared 0.6327 0.0000
P-xylene by Hexane, P-xylene by Toluene
P-xylene by Trimethylpentane
Octane Load Squared 0.6816 0.0030
Infivent Humidity 0.6864 0.0213
Reactor Temperature 0.5806 0.0000
Redox Potential 0.6684 0.0000

Summary: In Table 7, hexane load, trimeth yipentane load, toluene load, p-xylene load, octane load, reactor
temperature, and redox potential have strong, slatistically significant effects on p-xylene degradation.
Benzene load's effect is not significant at the 0.01 level P-xylene load is no more important to the prediction
of p-xylene degradation than hexane load or toluene load.

17
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6.3 Diagnostic plots
Figures 8a and 8b contain five types of diagnostic plots for each of the six hydrocarbon degradation

models: observed degradation rates versus predicted degradation rates; predicted values versus residuals;
and each of the residuals, observed values and predicted values versus observation number.,

The observed-by-predicted plots show how well a model predicts the actual values. The ideal plot
would show points along the line of equality {this iine is included in these plots), indicating a correlation near
one. A high correlation indicates that a modsl fits the data fairly well. In some of the plots, a pattern of points
falling above the line for the smaller values and below the line for the larger values indicates that our modet
over-predicts the smaller degradation rates and under-predicts the larger prediction rates. This pattem is
particularly obvious for the aliphatic hydrocarbon degradations. The aromatic degradatioh models fend to
have a stronger linear relationship between the predicteﬁ and observed degradation values than the aliphatic
models.

The residual-by-predicted vale and residual-by-observation number plots sho.uld appear fairly
random. Some of these plots tend to show slight pattems that may indicate that homogeneity of variance
assumptions necessary to construct linear models may be violated. However, thers are no strong, obvious |
pattemns evident. Also, | chose not to delete any points as outliers since | had i'rﬁle opportunity to consuit with
the client on the consequences of deleting particular points. There did not seem to be any unusually large
outliers to be really concemed about.

The observed-by-observation number plots and the predicted-by—obsen(alion number plots can be
compared to see how closely the predicted values foliow the observed values. Also, some of these plots
contain curvature that resulted from tuming on and off the various loads. The aromatic hydrocarbon plots,
in particular, display this pattem as well as a consistent decreasing frend in the degradation rates over time.
The observed and predicted values over time fdr the aliphatic degradation plots appear more scattered and
random than the aromatic degradation plots, but the they also have a smaller scale along the vertical axis.
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6.4 Total Hydrocarbon Degradation Models

A new response variable, “total hydrocarbon degradation,* was formed by adding the degradation
rates of all six hydrocarbons. To model total hydrocarbon degradation rate, two models were used: one
reduced from 33 initial variables, and one reduced from 11 grouped variables. By grouping the hydrocarbons
into their two separate classes, total aliphatic and aromatic degradation rates were modeled as well. The {1
grouped variables were as follows:

The six original physical traits plus,

Aliphatic Load (Hexane+TMP+Qctane)
Aromatic Load (Benzene+Toluene+P-xylene)
Aliphatic Load Squared

Aromatic Load Squared

Aliphatic by Aromatic Interaction

Below are the tables for models of total hydrocarbon (Table 8), aromatic (Table 9) and aliphatic (T able 10)
degradation rates.

Table 8

Response: TOTAL HYDROCARBON DEGRADATION
Model Description Ad| R intercept
12 variables (of 33), N=291 0.9862 Y 0001

Predictors: Hexane Load
Trimethylpentane Load
Toluene Load
P-xylene Load
Toluene Load Squared
Octane Load Squared
P-xylene Load Squared
Toluene by Benzene
Influent Humidity
Reactor Temperature
Redox Potential
Conductivity

8 grouped variables (of 11), N=291 0.9826 Y 0001
Predictors: Aliphatic Load
Aromatic Load Differential Pressure
Aliphatic by Aromatic Redox Potential
influent Humidity Conductivity
Reactor Temperature
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Table 9
Response: TOTAL AROMATIC DEGRADATION
Model Description Adj R®

Intercept

14 variables (of 33), N=262 0.9516

Predictors:  Hexane Load '
Benzene Load
Trimethylpentane Load
Octane Load
P-xylene Load
Hexane Load Squared
Trimethylpentane Load Squared
Toluene Load Squared
Octane Load Squared
Toluene by Benzene
Toluene by Trimethyipentane
Differential Pressure
Redox Potentiaf
Conductivity

6 grouped variables {of 11), N=262 0.9350
Predictors: Aromatic Load
Aliphatic by Aromatic
Influent Humidity
Reactor Temperature
Redox Potential
Conductivity

Table 10
Response: ALIPHATIC DEGRADATION
Model Description Adi R?

Y .0002

Intercept

12 variables (of 33), N=280 0.4472

Predictors: Hexane Load

Benzene Load

Trimethylpentane Load

Octane Load

P-xyiene Load

Hexane Load Squared

Trimethylpentane Load Squared

Toluene Load Squared

P-xylene Load Squared

Toluene by Trimethylperitane

Octane by Benzene

P-xylene by Hexane

3 grouped variables (of 11), N=280 0.1760
Predictors: Aliphatic Load
Redox Potential
Conductivity
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6.5 CO, Production Models

When the hydrocarbons are being degraded by the biofilm, CO, is produced. The amount of CO,
in the reactor was measured throughout the experiment. The CG, production rate was modeled in the same
manner as total hydrocarbon degradation, first reducing from a 33 variable model and then an 11 grouped
variable model.

Table 11
Response:  CO, PRODUCTION
Model Déscription Adj R? Intercept
13 variables {of 33), N=291 0.7385 Y 0194
Predictors: Benzene Load
Trimethylpentane Load
Tolyene Load
Benzene Load Squared
Toluene Load Squared
Octane Load Squared
P-xylene Load Squared
Toluene by Benzene
Toluene by Trimethylpentane
Reactor Temperature
Differential Pressure
pH
Redox Potential

6 grouped variables (of 11), N=291 0.6887 No
Predictors: Aromatic Load

Aliphatic Load

Influent Humidity

Reactor Temperature

Differential Pressure

Redox Potential

No pattems in the chosen explanatory variables are evident, other than there

are more aromatic hydrocarbons included than aliphatic hydrocarbons.
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7. CONCLUSION

7.1_Client Conclusions

- Aregression modelling study was conducted to determine the effects of the six hydrocarbon loading
rates on the degradation rates of those same hydrocarbons. The data were taken from a vapor-phase biofilm
reactor. Plots of the hydrocarbon degradation_ rates by the loading rates indicated that some explanatory
terms needed to added 1o the model quadratically, rather than linearly. The addition of quadratic and
interaction terms improved the fit of the models tremendously, compared to the original linear models. The
analysis used only the most informative subset of the data, period C.

Unremovable multicollinearity was present in the data. A high degree of muiticollinearity does not
allow reliable interpretation of the models phenomenologically, such as estimation of partial correfation and
mutltiple regression coefficients. Nevertheless, we could amive at qualitative conclusions by examining the
effect of a hydrocarbon loadihg rate on the ability to predict a degradation rate. The regression models can
be used to predict degradation rates for various toading pattems within the range of loadings used in the
experiment. Adding other éxplanatory variables to the final model does not improve the model; that is, adding
other explanatory variables increases negligibly the adjusted-R%.  We cannot assume that the explanatory
variables not in the final modef do not effect the degradation response. We can only assume, that GIVEN
the variables already in the final _modei, the other variables not in the mode! do not improve our prediction
capabilities,

- The aromatic hydrocarbons {benzene, toluene, and p-xylene) were easier to model than the aliphatics
{hexane, trimethylpentane, and octane). Benzene and toluene degradation rates were easiest o model, and
their modeis yielded the highest adjusted-R? values (0.83 and 0.92 respectively). The largest adjusted-R?

f_or an aliphatic hydrocarbon degradation model was 0.58,
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There are several resulis on how different loadings effected individual hydrocarbon degradations.

. In general, the individual aliphatic hydrocarbon loading rates had little influence on an aromatic
hydrocarbon degradation rate. Aliphatics do not appear at all in the models for benzene and toluene.

. The intercept term was zero in five of the six individual hydrocarbon models (the exception being
trimethylpentane).

. Toluene loading had a significant effect on the degradation rate of each hydrocarbon.

’ Hexane load, trimethylpentane load, and toluene load each effect p-xylene degradation as much as
does p-xylene load.

. Only nine of the total fifteen interaction terms appeared in the six hydrocarbon degradation models,
and specific interaction terms appeared in no more than two models.

PH balance was the only measured physical characteristic that did not appear in any of the models.
There was no pattern as to which models each of the other five physical characteristics appeared in. Reactor
temperature appeared in five of the models (excluding the toluene model), while redox potential was present
in four of the models.

For the total hydrocarbon degradation model, no zero load cases were deleted (N=291) since there
was aiways at least one hydrocarbon being entered into the system. For the aliphatic or aromatic degradation
models, cases were excludedif the total aliphatic or total aromatic loading rate was zero. This action reduced
the data used in these models to 280 and 262 cases, respectively. When the degradation rates and loading
rates were separated into two groups, aromatics and aliphatics, the aromatic degradation model did not
depend on the afiphatic load rates. When the two groups were combined to form total hydrocarbon
degradalion, the associated model was very similar to the aromatic mode!l. More aromatics were degraded

in the system than aliphatics. Of the total hydrocarbon degraded, 85% to 99% is aromatic degradation. A
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logical explanation for this difference in degradation rates stems from the fact that the reactor system contains
water and the aromatics are water soluble while the aliphatics are not.

The adjusted-R? values are large for the total hydrocarbon and the aromatic hydrocarbon degradation
models compared to the aliphatic hydrocarbbns. For the aromatic and total hydrocarbon degradation modelé.
the adjusted-R? is greater than 0.9, indicating that most of the variation in the degradation rates is explained
by the models. The models using the grouped variables have comparable adjusted-R’ values, so it is just
as appropriate to use the groubed variable models when predicting degradation fates for aromatics or total
hydrocarbons. The grouped models will be .easier to use since the equations are simpler and the explanatory
variables are easy fo understand.

For the aliphatic degradation models, the adjusted-R% are much lower, particularly for the grouped
model (adjusted-R’=0.18). Again, this is due to a small range of degradation rates for these compounds
because they are not water soluble. The grouped data mode! for aliphatic degradation is not appropriate for
prediction purposes.

The CO, production model contained thirieen variables, six of which are benzene or toluene load
terms, and had an adjusted-R? of 0.74. | did not research CO, production any further other than developing
amode! because | did not know how to inlérrupt the reéults. The interpretation of the mode! resufts were left

entirely to the client.

7.2 Statistical Conclusions

The first step in any data analysis project should invotve plotting the data. By plotting the data, |
realized that quadratic explanatory variables needed to be entered into the models. {was also able to see

the problems with multicollinearity in the explanatory variables.  Because of the multicollinearity, a
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quantitative analysis:, such as partial correlations, regression coefficients, etc., cannot be accomplished. The

following example illustrates this problem.

Table 12

Two Models for Toluene Degradation:

Mode! 1: 10 variables and an intercept term Adjusted-R*=.9106
Model 2: 12 variables and an intercept tem Adjusted-R?*=.9172

Predictor: Cosfficient in Mode! 1: Coefficient in Model 2:
Intercept Term 2.3824 2.0337
Hexane Load NA -0.2348
Toluene by Hexane NA 0.0391
Benzene Load -2.0549 -1.9298
Toluene Load -1.0259 -0.9785
Octane Load -0.6915 -0.6808
P-xylene Load 0.0263 -0.1764
Toluene by Benzene  0.9260 0.8754
Toluene by TMP 0.0153 -0.0023
Octane by Toluene 0.3046 0.2997
P-xylene by Toluene -0.0340 0.0481
Redox Potential 0.0026 0.0013
Conductivity 0.0015 0.0022

Table 12 shows two ditferent models for foluene degradation with nearly the same adjusted-R?
values. Model 2 uses the same explanatory variables as Model 1 and includes hexane load and the
interaction, toluene by hexane. The highlighted lines indicate variables for which the regression coefficient
changes sign when the two hexane variables were added. This illustrates that, when there ig muiticollinearity,
the slightest change in a mode! can reverse the signs and drastically change the values of some regression
coefficients. The partial correlation cosfficient is similarly-sensilive. This example- shows why we-cannot
quantitatively analyze the coefficients of the explanatory variables, and hence we cannot gvaluate partial
comelation coefficients. However, the final model can be used for prediction puiposes (as long as one does
not extrapolate away from the loadings and physical characteristics of this experiment). Also, a qualitative

assessment is possible: if there is a qualitative drop in prediction accuracy, as measured by adjusted-R?,
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when an explanatory variable is removed from the final model, then that variable is important.

Zero loading rates for each degradation rate were removed from the data to assure us that the
models were applicable to relevant positive loadings. Throwing out the zero-loading cases reduced the
adjusted-R* values by as much as two tenths in some cases. This was due to the fact that the cases at the
point zero load, zeto degradation were highly influential to the regression. When modeling a cluster of points,
it is difficult to fit a line through the cluster, but iflseveral cases occur at one point outside of the cluster
(specifically, the zero loading and zero degradation: point), the regression line will go through this point. It
is somewhat surprising, therefore, that the adjusted-R? for trimethylpentane degradation increased when we
removed the cases where the trimethyipentane load equalied zero.

The data contain negative degradation rates, which we were having trouble interpreting. Since
degradation rates are a measure of the ditference between the amount of a hydrocarbon going into the
system and the amount coming out, negative rates appear to result from transient peaks of hydrocarbon
leaving the system. Further, negative rates are attributable to inherent variability in the methods of chemical
analysis. For example, if hexane load were terminated, and significant quantities of hexane remained in the
reactor, whether in gas phase, dissolved in the liquid, or absorbed by the reactor contents, then measurable
hexane might still be present in the reactor effluent for some time. Hence, a negative degradation rate
(influent minus effiuent rates) would result, It is inconceivable that hex_ane would actually be produced inside
the reactor. Some data entries, particularly for toluene degradation, appear to be impossible as degradation
rates exceed loading rates. Finally, comparison of the data columns labslied "PPMV_C" and “umoles-
C/M2*DAY* point to the use of a conversion tactor which was not constant throughout the experiment.

In order to develop regression models in the first place, two main assumptions need to be upheld.
The first is homogenetty of variance in the errors of each model. To evaluate this assumption, residuals can

be plotted by time and by predicted values. if patiems appearinthe plots then the homogeneity assumption
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is not appropriate, and it would be best to look at & possible transformation, or maybe generalized linear
models. To review these plots, see Figures 7a and 7b. The second assumption is that the errors are
nomally dislrib_uled. To evaluate this assumption, a normal probability plot of the residuals is effective. If
the residuals appear fairly linear on the plet, then the normality assumption is acceptable. See Figure g for
the normal probability plots of the single hydrocarbon degradation models. These plots appear slightly heavy
in the tails which may indicate that the nomnality assumption is not upheld. Dr. Hamilton and | recognized
this problem, but due to time constraints, we chose not to pursue methods other than ordinary least squares
procedures.

7.3 Extensions

The main extension would be to rerun the experiment without the mutticollinearity in the explanatory
variables. Experiments such as this can be designed to prevent multicollinearity among explanatory variables.
One class of designs is called the Box-Behnken design {see Box and Draper, 1987). If one were planning
a new experiment with six hydrocarbons, the standard Box-Behnken design would require only 54 runs, or
cases. Figure 10 shows the structure of this design.

A principal component analysis of the variables would be appropriate and it would eliminate the
multicollinearity problems. However, the resutting models would be difficult to analyze in terms of the
hydrocarbon loading variables so the Box-Behnken design is a solution to the multicollinearity problems that
is more beneficial to the client. |

Transformations, generalized linear models, or robust estimation procedures may help eiiminate
probiems with the original model assumptions. Nonadditive models or data smoothing would be other options
to use in working with this data.

Because of tﬁe range of the loading rates {between zero and five units), the linear and quadratic

terms for each loading are collinear. A reanalysis using centered and scaled predictors would eliminate

within-loading collinearity by creating linear and quadratic predictors that have small {near zero) correlation. B
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| cannot guarantee that a reanalysis would result in significantly improved models, but it may be worth future
considerations.

My advisor, Dr. John Borkowski, mentioned that using CuSum charts on the residuals would be
another way to test the residuals for independence over time and homogeneity assumptions. Given more

time, this would probably be my next step since these graphs can be very informative of the overal! process.
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Figuré 1: Linear Model! For Hexane Degradation -

Model fitting results for: B:GCSUMC.HEXDEG
lllllllllllfllII1II!!Ill!I!III!IIIIIlll

Independent variable coefficient std. error t—value sig.level
DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD
B:GCSUMC.HEXLOAD 0.130607 0.01838 7.1061 0.0000
B:GCSUMC.BNZLOAD 0.016044 0.017583" 0.9125 0.3623
B: GCSUMC. TMPLOAD 0.016314 3.01921¢6 0.8490 0.3966
B:GCSUMC. TOLLOAD —0.005143 0.013375 ~0.3845 0.7009
B:GCSUMC.OCTLOAD —0.009644 0.013711 -0.7034 0.4824
B:GCSUMC. PXLIOAD 0.003231 0.01088s 0.2968 0.7669
B: GCSUMC. INFHUM 0.003699 0.001439 2.5713 0.0107
B:GCSUMC.RTEME. —-0.000412 0.005889 =0.0700 0.9442
B:GCSUMC.DIFFPRESS ~0.020244 0.047913 —0.4225" 0.6730
B:GCSUMC. pH 0.021146¢ 0.028374 0.7453 0.4567
B:GCSUMC.REDOX 0.00051 0.000252 2.0239 0.0439
B:GCSUMC. CONDUCT -0.000384 0.000164 —-2.3387 0.0201

JDDDDDDDDDDDDDDDDDDDﬁDDDDDDDDDDDDDDDDDDDDDbDbDDD

DDDDDDDDDDDDDDDDDDDDDDDDDD

DDDDDD
~5Q. (ADJ.) = 0.6865 SE= 0.102313 MAE= 0.072058 DurbWat= 1.453
Previously: 0.8653 0.075859 0.041274 2.810

¢90 observations fitted, forecast(s) computed for 0 missing wval.
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This is a Box-Behnken design for six hydrocarbons. The three numbers represent three lavels of loading
rates: -1 refers to the lowest loading rate level, 0 refers to the middle boading rate level, and 1 represents
the highest loading rate level. For example, the first case would have the first, second, and third
hydrocarbons set at their lowest rate and the third, fifth and sixih hydrocarbons set at their middle rate.
There are 54 tofal cases o run to obtain all the necessary information for the analysis. The design is

orthogonal so no mufticollinearity would exist.

Box-Behnken Design for Six Hydrocarbons

Figure 10: The Box-Behnken Design
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