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Types L, I1, and ITI Analyses in Linear Models

Introduction
The conventional linear model can be written as
y=Xp+¢g, 4y

where y is the n -vector of responses (that is, y: # x1 is the vector of responses), X is an
n % pdesign matrix having rank » < p, B is an unknown p -vector of regression
coefficients, and € is an n -vector of random errors. It is assumed in this paper that € ~
N(0, 6°1,) so that y ~ N(XB, ¢’ 1)), and that ¢” is an unknown scalar. Statistical analyses
of models having the form in (1) often have one of two primary goals (SAS/STAT,

1988). The first goal is estimating the elements of §§ (or linear combinations of the
elements of ). The second goal is testing hypotheses about the elements of B (or linear
combinations of the elements of B).

Denote the perpendicular projection operator onto the column space of X by ppo(X),
or, alternatively, by H. An explicit equation for H is

H =ppo(X) =XX'X)'X’,

where (X"X) is any generalized inverse of X’X. If rank(X) = p, then (X’X) can be
replaced by (X’X)™'. In some models it is convenient to partition X and B. For example,
X and B might be conformably partitioned as

B
X=X X; X,) and = (Bz} s
| _ﬁs

' 3
where X, is nx p, and f is p, x1 for i =1,2,3. We also require that Y p, = p. Each

]

sub-matrix of X generates a projection operator:
H,=ppo(X,) = X,(X; X,)X;.

Let LB be a particular linear function of B of interest. If we wish to estimate L3, we
must first determine whether or not Lp is estimable. By definition, L is linearly
estimable if and only if a linear combination of the y’s exists which has an expected value
of LB, and this must hold for all p (SAS/STAT, 1988). That is, there must exist A and K



such that E(Ay+K) = L for all B. But E(Ay+K) =AE(y)+EX)=AXp+K,sop =0,
and E(Ay+K) =L = AXp + K = 0 together imply that K =0. Thus, if L{ is to be
estimable, we must have LB = AXp for some A and for all . if we now letp = e,, the
i® column of I, for i =1,2,..., p we can conclude that L, = (AX), and thus that . = AX

for some A. This says that L} will be estimable if and only if a linear combination of the
rows of X can be found which equals L. That is, L’ must be an element of the column
space of X’.

An understanding of estimablilty is important if the goal of the analysis is estimation,
this is not surprising. However, it is also important that we understand estimability if the
goal of the analysis is hypothesis testing because the definition of a testable hypothesis
involves the concept of estimability. A testable hypothesis is a hypothesis which can be
expressed in terms of estimable functions (Searle, 1971). So if we wish to test H: Lp =
8, then L must be estimable and § € R (L) must hold where R (IL) represents the column
space of L.

Review of R-Notation

For convenience of notation in the upcoming portions of this paper, it is worthwhile to
briefly review some basics of R-Notation.

Some important sums of squares we need to review are SST, SSE, and SSR. The total
sum of squares is SST =y’y = ny . Notice that SST does not depend on the model we
!

intend to use for the analysis. The sum of squares of the deviations (or sum of squared
deviations) of the observed y’s from their predicted values is SSE = (y-$)'(y -¥)= (-

Hy)’'(y-Hy) =y’@-H)y =y’y — y’Hy because y= E(y) = Xp = X(X’X) X’y = Hy
(Searle, 1982). Notice that because SSE involves H, it reflects the choice of the model.
Using H implies that we are using the entire parameter vector 8, so we are saying that
E(y) = Xp. If we wanted to use only part of the parameter vector f, say B, that is, if we
assume that E(y) = X,$,, then we would use H, = X,(X,’X,)X,’ rather than H. So under
the assumption that E(y) = X,B,, we would have SSE, = y’(I-H,)y. Similar constructions
of SSE’s are possible using other parts of § along with their corresponding design
matrices in place of P, and X,. In this way we see that SSE reflects the model we have
selected for the analysis. SSE is also referred to as the residual sum of squares or sum of
squares for error. The final sum of squares we need to mention is SSR, the sum of
squares due to regression, the regression sum of squares, or the reduction in sum of
squares (Searle, 1982). By definition, SSR = SST — SSE = y’Hy, under the assumption
that E(y) = XB. SSR represents the portion of SST attributable to having fit the model
chosen for the analysis as indicated by the construction of SSE. So if we were working



under the assumption that E(y) = X,B,, we would have formed SSE, = y’(I-H,)y and
hence we would have SSR, =y’H y.

It is important to note that SST is a fixed quantity based only on the observed y,
values, not on the model. SSE is the sum of squared deviances Z(y ,-¥,)? , thusitisa
i

measure of the accuracy of the selected model. The smaller the value of SSE, the more
accurate the model. So since SSR = SST — SSE, we see that larger values of SSR are
better in the sense that they indicate a better fitting model, or in other words, larger values
of SSR indicate that the selected model has accounted for a larger portion of the total sum
of squares SST. In this way, we can compare various models based on our choice of the
parameter vector we wish to use. We can try using the entire parameter vector f, or we

can use Only part OfB SHCh as Bl’ BZ: B!s Bl! = (g!) s ﬂi! = [gl) ,yor BZ."I = (gz) M NOte
2 3 3
B

that if we wish to use B, = (ﬂ ] , we would need to use the corresponding design matrix
2

Xu = (Xi X,_) and Hu = XII(XH,XH)-XH’ when form.ing SSEH and SSR‘z.

With this review of SST, SSE, and SSR, we are ready to define the R-Notations R()
and R()

R-Notation is intended to simplify the notation involved in representing the various
sums of squares as we compare different models of interest. The R-Notation R()
represents the reduction in sum of squares due to fitting a model having a specified
parameter vector. So under E(y) =XB, R(B) =SSR = y’Hy where H=X(X"X)X’ as
mentioned previously. Under E(y) =X, B,, R(B,) =y’H,y which we have denoted as
SSR,. Under E(y) = X;,B1; = XiB, + X,f,, then R(Byp) =y’H,;y which we can denote as

.8SR,,, and so on. Note, R(B,,) is commonly denoted as R(B,, B,).

The R-Notation R(}) is used to represent the reduction in sums of squares due to
adding a specified term or terms to a model which currently contains certain other
specified terms (Searle, 1982). For example, suppose we wish to compare the reduction
in sums of squares due to fitting E(y) = X,B, versus E(y) =X,B, + X8, =Xp,p.. The
difference between the reductions in sums of squares for these two models is SSRy; -
SSR, = (SST — SSE,,) — (SST — SSE,) = SSE, — SSE;; = R(B,, B) ~ R(B,)- It is this
difference which we denote as R(f,|B,). It represents the additional reduction in the sums
of squares due to fitting E(y) = X,B, + X,B, above and beyond the reduction in sums of
squares due to fitting E(y) = Xf;. Another way to interpret R(B,IB,) is to say that it gives
the amount by which the residual sums of squares can be reduced by including the term
X,B, to a model which currently contains only X,8,. The idea is that if this additional
reduction in residual sums of squares is significant, then we would prefer the model -
which contains both terms X, B, and X,B,. If including the term X8, in the model does



not lead to a significant reduction in the residual sums of squares, then it is not deemed
necessary to include the additional term X,f3,.

Similarly, we can check the effectiveness of adding the term X, to a model which
currently contains only X,B,- This would be accomplished by considering the difference
R(B, |B,) = R(B, B,) — R(B,). This process applies in general to other models we may
wish to consider, we need only be careful to properly account for the terms of interest.

Type I Analysis

The interpretation of the Type I Analysis is that it is a sequential analysis (Milliken and
Johnson, 1992). For example, we could start with the model y,, = u+£,, wherepis
the grand mean or intercept term. Then sequentially add terms to obtain the three-way
model without interaction y,, = g+ @, + 7, +7, + £y . The order in which the terms
are added to the model is important in a Type I Analysis. So the Type I Analysis is
model-order dependent (SAS/STAT, 1988), each effect is adjusted only for the preceding

effects in the model. This can be seen when we consider the sums of squares involved in
the Type I Analysis.

Suppose we had started with the model y,, = 4+ &, and that the regression sum of
squares was obtained for this model. Denote this regression sum of squares as SSR,, or
using R-Notation, we can denote this as R(i). Now add Factor A to the model,
represented by @, and obtain the regression sum of squares for the new model
Yy = #+ @, + &y, . Denote this regression sum of squares as SSR,,, or using R-
Notation, R(p,t). The difference SSR,; — SSR, is therefore R(ajp) and is also equal to
SSE, — SSE,,. Thus, R(alp) is the reduction in the residual sum of squares due to adding
Factor A to the model which initially had only the intercept p.

We could now add a second factor, Factor B, denoted by 7. So the model is now
Yy = B+ @, + T, + £y . Again, we obtain the regression sum of squares for this model
which we can denote as SSR,,;. Note that SSR,,; = R(p,a,7). The difference SSR,;; —
SSR,, is R(t|p,&), which is also equal to SSE,, - SSE ;. Thus, R(t|p.a) is the reduction
in residual sum of squares due to addlng Factor B to a model which contained the
intercept p and Factor A.

Finally, we could add the third factor to the model, Factor C, denoted by 7, . This
gives us the three-factor model y,, = pu+a,+ 7, +7, + & mentioned previously. We
would again obtain the regression sum of squares for this model, denoted by SSRy5s..



Note that SSR,,;, = R{p,a,7,y). The difference SSR,;;, ~ SSR,; is R(y|p,ct,T), which is
also equal to SSE,,; — SSE,,;,. Thus, R(y|p,a,7) is the reduction in residual sum of
squares due to adding Factor C to the modal which includes the intercept, Factor A, and
Factor B.

The Type I Sum of Squares for the factors of this example are R(aju), R(tju,a), and
R(ylp,a,1). We emphasize that the sequential order in which the factors were added to
the model is important. We added the factors in the order Factor A, Factor B, then Factor
C. If we had added the factors in the order Factor C, Factor A, Factor B, then we would
see different results. Under this new sequence, the Type I Sum of Squares would be
R{7lw), R(cjp,y), and R(tjp,y,o). These sums of squares could be different than those
obtained previously, they represent different models. We will denote the Type I Sum of
Squares as- Type I SS.

In the above discussion concerning Type I S8, it was mentioned that each Type I SS
represents the reduction in residual sum of squares due to adding an additional term to the
model. One may ask whether or not the reduction in residual sum of squares is
significant. That is, we could ask whether or not it is important to add a specific term to a
current, specified model. Formal hypotheses for this question are H,: The additional term
is not important to the model, versus H,: The additional term is important to the model.
By “important to the model”, we mean that the additional term significantly reduces the
residual sum of squares for the model thereby yielding a2 more accurate model in terms of
prediction. The hypotheses described here are known as Type I Hypotheses or Type I
Testable Hypotheses.

For an example of the formal symbolic presentation of the Type I Hypotheses, let us
consider the two-factor model without interaction y,, = u+a, + 7, + £, and assume
the data are balanced. We can represent this model as y = Xp + & as before. We would
then have X partitioned as X = (X, X, Xj)where X;=1,®1,®1,,X,=1 ®1,®1,,
and X, =1, ®1_ ® I,, assuming Factor A has a levels and Factor B has 4 levels and
that the data are balanced. If we follow the convention that X is an n x p design matrix
having rank r, then rank(X,) = 1, ank(X,) = a, rank(X;) = b, and r =(a-1)+(b-1)+
1= a+b-1. Accordingly, B would be partitioned as

5 a,) T

! a, 7,

B= ﬂz where[i1=[.l,[52= . sandB3= .
Bs )

a, T,



So then E(y) = XB = X, + X;B, + X;B,. Under this model, a test concerning the
importance of Factor A over a model with only an intercept term is represented by H,:
(H,, — H))E(Y) = 0 versus H,: (H, - H))E(y) # 0. Other equivalent forms for the null
hypothesis include H,: X, E(y) =0 where X, , = ( - H,)X,, or H,: H, ,E(y) = 0 where

H,, = ppo(X,,), or H,: A =0 where A = @_}I%ELQ
o

for the null hypothesis which more closely follows the notation used with the idea of

. Another common representation

estimability is H;: Lp =0 where L = X, X = (X, X, X;,X; X;,X;). Using this
notation, we see that Lp = 0 simply becomes X,, XB; + X;, X,B, + X;, XsB; =

X, E(y) = 0 which was listed above as one of the equivaient forms of H,. There are yet
other equivalent forms of the null hypothesis, we mention the variety of equivalent forms
because some are more convenient than others in certain circumstances. For example, the
H,: LB = 0 form is convenient when working with SAS® output or when a practical
interpretation of the test is desired. The H,: (H,, — H))E(y) = 0 form is convenient from a
mathematical point of view, it is easily related to the test statistic as will be pointed out
later. Finally, the H,: H, ,E(y) = 0 format is convenient when we wish to identify how
each term is treated in the analysis. Although H,, - H, = H, , the subscript notation H,
is helpful because it classifies the terms contained in E(y) into three groups. The term
listed before the “.” is the term currently being tested. In this case, the second term is &,
which represents Factor A in the model. The term or terms listed after the “.” are the
terms currently included in the model. In this case the current model includes only the
intercept term . The terms listed after the “.” will be annihilated when multiplied by
(Hg — H,) where Hg and H, are the perpendicular projection operators representing the
alternative and null hypotheses respectively. In this example (Hg —H,) is (H,; - H).
Finally, any terms of E(y) which are not listed in the subscript may or may not affect the
test. Ifthe data are balanced, unlisted terms will be zeroed out by the orthogonality of the
components of the design matrix X. If the data are not balanced but has no empty cells,
unlisted terms will effect the test, they will be represented by non-zero coefficients in the
matrix L. The matrix L will be discussed in more detail later.

The reference distribution for the test is an F distribution with noncentrality parameter
A. Under the null hypothesis, A = 0, so that the F distribution would be a central F
distributien. The form of the test statistic for this test is
R(aju)
__a=1
F=SsE,,,
n—r
where R(a/w) = SSR,, - SSR, = SSE, — SSE,,. Recall that SSE, =y*(I-H,)y, SSE,, =

y'(I-H,,)y, and SSE,;; = y’(I-H )y = y’(I-H)y as described earlier. See appendix for a
more general form of the test statistic.



Note that while we are not conducting a test concerning Factor B directly, for an
unbalanced data set Factor B will effect the Type I Hypothesis matrix L. This occurs
because for an unbalanced data set, X, is not annihilated by (H,, ~ H,). We will point
this out again later when we review an example using SAS®.

Continuing with Type I Hypotheses, let us consider a test which exarnines the -
importance of Factor B in a model which currently contains an intercept term and Factor
A. Our hypotheses are now H,: The Factor B term is not important to the model
currently containing the intercept and Factor A terms, versus Ha: The Factor B term is
important to the model. Symbolically these hypotheses are H,: (H,;; —~ H;;))E(y) =0
versus H,: (H,; — H;))E(y) # 0. Note that under the model y,, = g+ a, + 7, + &, , Hyy,
is just H. Again, we can express the null hypothesw using various equivalent forms such

as H;: X, , E(y)=0 where Xy = —HpX,, or H: Hy, le(Y) 0 where H, ;, =

ppo(X;, 1) OF H,: A =0 where A = Eyy f’ 2EY) . Another common form is H,;: E(y) =
. O'

X,B, + X,B, versus H,: E(y) = Xﬁ X, +X,B,+ X.Bs. As before, we can also express
the null hypothesis as H,: LB = 0. For this test, L = X, nX= (X3 12 X4 Xin X,

X, 12 X3). ‘So once again, we see that Lp = X, 12 xlﬁi + Xs pXab+ X, XB; = .

X, 12 E(¥)- As before, the reference distribution for the test is an F distribution with

noncentrahty parameter A. Under the null hypothesis, A =0, so again the F distribution
would be a central F distribution. The form of the test statistic for this test is now

R(rp, @)
— r-a
F=-3sE,,
n-r

WhEIC R.(tll-l,a) = SSR[B - SSRu = SSE]Z - SSE]E, SSE12 = y’(I_Hu)y and SSEI?S = SSE
=y(I-H)y since H,,; = H. Note that » —~a = b -1 which can be used in the expression
forF. . . ' ' '

We emphasize that with Type I Hypotheses, the order in which the terms are tested is
key in the analysis. In the previous example, if we had tested the importance of Factor B
over a model containing only an intercept term. then proceeded to a test of the importance
of Factor A in the presence of an intercept term and a Factor B term, the tests would be '
different than those descnbed above. _ . .

The hypotheses comeming Factor B can be written as H,: (H,; ~ H,)E(y) = 0 versus
H,: (H,; — H)E(y) = 0. Some equivalent forms for the null hypothesis are H,: X, ; E(yY) =
0 where X, ; = (I —H)X;, or. H,: H; ,E(y) = 0 where Hy; = ppo(X;,), or H,: A = 0 where



E(y)H,,E . . .
A= (Y)z 2] ) . Following the notation commonly used with the notion of
o

estimability we could write the null hypothesis as H,: Lp =0 where L = X, X =
(X.].l b. ¢ X;.l X, X.J.l X,) so that L@ =X'3.1 XB+ X;.l X,B, + X's_: XiB; = X'“ E(y).
The form of the test

statistic for this test is

R(7| )

= b-1
F=SsE,

n-—r

Where R(Tli-l) = SSR[; - SSR] = SSE{ - SSEH, SSE] = y,(I—Hl)y a.lld SSE!3 = y,(I'_Hu_)y.

The hypotheses for testing the benefit of adding Factor A to a model which contains an
intercept term and Factor B can be written as H,: Hy: (H,p; — Hy3)E(y) = 0 versus H,: (H,
- H,)E(y) # 0. Again, under the model y, = u+a, + 7, + &y, Hy is simply H.
Equivalent forms of the null hypothesis include H,;: X, s E¥)=0where X, ;= -

- H,;»)X,, or H,: H, ;;E(y) = 0 where H, ;; = ppo(X;3), or H: A =0 where A =
H,.E : . . :
EQ) oo ) orH:Lp=0where L= X, X= (X33 X1 XpuXy Xy Xy). So
once again, we see that Lp = XonXif + XonXaP + X1 XaB; = X, E(y). The form
of the test statistic for this test is

R(ap, 1)
r—-b
SSE,,,
n—r

F=

Whel'e R(C!.hl.,‘t) = SSRIH - SSR13 = SSEu - SSEI”, SSE|3 = y’a—Hu)y and SSEHJ = SSE
= y’(I-H)y because H,; = H. It is common to use a—1 in place of r—b inthe above
expression for F since a—1=r-b.

Again, in a Type I Analysis the sequence in which the terms are considered and tested
is of key importance. Also, the test statistic for each test involves the Type I SS
associated with the term under consideration, see Table 1 below which refers to the three-
factor example discussed earlier where the factors are added in the order Factor A, Factor
B, and finally Factor C (the model did not include interactions, and we assume a balanced
data set). In general, the larger the value of the Type I S5, the more important the
proposed term is to the model (Milliken and Johnson, 1992). ‘This is due to the relation
between the Type I SS and the corresponding F-statistic, the larger the value of the Type
SS, the larger the value of F, and hence, the more likely we are to reject the null



hypothesis in favor of the alternative hypothesis which is that the additional term is
important to the model.

Table 1
Source df SS MS F
Factor A a-1 R(ajp) MSA=R(o/|pw)/(a—~1) MSA/MSE, s,
Factor B b-1 R(tjp,a) MSB=R{t|u,a)/(b-1) MSB/MSE,,,,
Factor C c—1 R(yjp.a,7) MSC=R(ylp,e,t)/(c—-1) MSC/MSE,,,,

Error n-a—-b—c+2 y'y-R(p,a,t,y) MSE=SSE/n-g-b-c+2)
Corrected Total n-1 y'y - R(n)

Note that SSE,,,, = SSE =y’({-H)y = ¥’y - R(u,a,t,y) since Hj,,, = H, so then MSE,,,,
= MSE. Also note that the Type I SS form a partition of the model sum of squares, where
by “model sum of squares™ we mean SS,, ., =SS, + SS; + SS., and we see that SS...4
Toat = SSpoaar + SSgree Where S8 et Tam = Y'Y — R(1). The quantity R(p) is commonly
called the correction for the mean (denoted CM) and is equal to #y. To see this, recall
that by construction, R(p) = y’H,y where H, = ppo(X,). In this example, X, =1,,an n-
vector of ones. Therefore, H, = X,(X,'X,)X,’=1,(1,1,)"1,. But (1.1,)= n, so that

1,1) =(1)" ==%. Furthermore, nj = y'1, = 1,y'. Finally then, y'H,y =

) .
yi 1) 1y= (ny % =np*. To write these results using the sums of squares
discussed earlier, SST, SSR, and SSE, we see that SSE = S8S,, SSR = 88,44 + CM,
SST = ¥’y = 88 orrectcd T T CM =SSR + SSE (Littell, Freund, and Spector, 1991 and
Searle, 1982).

If a model contains higher degree polynomial terms or interaction terms, those terms
are handled in the same way as other terms in the model. When dealing with interaction
terms, it is of course necessary that the interaction term follow the main effect terms for
factors involved in the interaction. For example, if we wish to test for interaction '
between Factor A and Factor B, the current modcl should at least contain Factor A and
Factor B. For higher degree polynomial terms, it is conventional to include all lower
degree terms in the model before considering the addition of a higher degree term. So for
example, if we wanted to test a cubic term for a certain factor, the model should already
contain the linear and quadratic terms for that factor.

When we consider the connection between the Type I SS and the Type 1 Hypotheses, it
is easy to see why the names chosen for each are s0 similar. Another term often seen
Estimable Function combines the concept of a general estimable ﬁ.mctlon Lp with the
idea of a Type I Hypotheses. For example, suppose we return to a model which includes
the intercept p and Factor A, and that we are considering the addition of Factor B to this



model (Factor C is not involved in this example at all). We saw earlier that we could
write the Type I Hypotheses in one of several equivalent forms. Another equivalent form
that is often preferred from a practical point of view is H;: 7, = 7, forall i # j, versus
H,: 7, # 7, for some i # j. For this format, Type I Estimable Functions must have the
form Lp where L is called the Type I Hypothesis matrix and P is the parameter vector
(B, O, Oy ooy &, , Ty Ty - T3 ) - For the convenience of an example, suppose that Factor

A has 4 levels and that Factor B has 3 levels, and that we assume no AB interaction so
that B = (lt, Oy, Oy, O3, Gy, Ty, Ty T5)'- In this case, L must be a matrix which is row

equivalent to
L_(OOOOOIO—)
“\o000001 -1 @
0
Thus we can rewrite our hypotheses as H,: LB = 0, versus H,: Lp # 0 where 0= | 0f .
0

Note that the hypotheses H,: LB = 0 versus H,: L # 0 is one of the equivalent forms of
the Type I Hypotheses discussed earlier, and that H: L = 0 simply says that 7, = 7, for
all i # j,or equivalently that 7, ~7, =0 forall i j. The estimable functions for
Factor B described by this example are 7, — t;, and 1, — 7,. They are estimable because,
for this example, L = X ,, X, which says L’ is an element of the column space of X.
Furthermore, these estimable functions describe the Type I Hypotheses we wish to test
concerning the addition of Factor B to a model which contains only an intercept term and
a single factor, Factor A. The presence of interaction terms in the model will of course
complicate the make-up of the Type I Estimable Functions. Examples involving
interaction terms can be found in the literature (Milliken and Johnson, 1992).

A popular software package that can be used to conduct a Type I Analysis is SAS®.
As part of PROC GLM, SAS® has the ability to calculate the Type I SS along with the F-
statistic values associated with the Type I tests of hypothesis for each term in a specified
model. The programs and printouts are very straight forward, but care must be taken
when designating the model to insure that the desired sequence is followed. For example
if we are working with a two-factor model without interaction, the commeand line

model y= A B;
in PROC GLM specifies that Factor A will be tested first against a model containing only
an intercept term, then Factor B will be tested against a model containing the intercept
term and a Factor A term. If the command line is changed to

" modely=B A;,

10



then the terms are introduced in the opposite order. To have SAS® calculate and print the
Type I SS along with their respective F-statistic, include the option SS1 after designating
the model as follows:

model y = A B/ SS1;.

The Type I SS will be listed immediately following the General Linear Models Procedure
ANOVA table on the SAS® printout.

Another option of PROC GLM allows SAS® to represent L, the Type I Hypothesis
matrix. The output does not present L in matrix form, but rather uses a format which
allows the user to determine the Type I Estimable Functions (and thus the Type I Testable
Hypotheses). To have SAS® represent the Type I Estimable Functions, type E1 after
designating the model as follows:

model y=A B/El;.

. As an example of how to interpret the SAS® representation of the L matrix, let us
return to the two-factor model without interaction and assume that Factor A has four
- levels and that Factor B has three levels. If the data are balanced and we pian to test
Factor A first followed by Factor B, the printout will be as follows:

- Type I Estimable Function for: A
Effect Coefficients -

INTERCEPT 0O

A 1 L2

2 L3

3 L4

4 -12-L3-14
B i 0

2 0

3 0

Type I Estimable Function for: B

Effect Coefficients

INTERCEPT 0

B d b e
[~ = = =]
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B 1 L6
2 L7
3 ~L6—-L7.

To determine the Type I Estimable Functions matrix (in row-reduced form), substitute
either ones or zeros for the L#’s. Note that by lettinginturn L2 =1,L3 =1, L4 = 1, with
all other coefficients set to zero in each case, SAS® is actually representing the Factor A
Type I Estimable Functions matrix :

60100 -102900
L={0 01 0 -1 0 0 0f,
0001 -100020

which in turn represents the null hypothesis thate, = @, forall i # j. Similar results
hold for Factor B, the Factor B Type I Estimable Functions matrix is

L‘.“(00000101]
0000001 -

Again, this is equivalent to the hypothesis thatz, = 7 , forall i # j as mentioned earlier in
). -

If the data are not balanced but there are no empty cells, the output will differ
depending on the cell counts. When the model contains no interaction terms, the main
difference between the output for a balanced data set versus an unbalanced data set is that
for the balanced data set we see that the only term with non-zero coefficients in the
printout is the term currently being tested. This will not be the case for an unbalanced
data set. For example, suppose that we continue with the two-factor design described
above where Factor A has four levels and Factor B has three levels. Suppose further that
each cell has two replicates with the exception of the first cell (level 1 of Factor a and
level 1 of Factor B) which has only one replicate. We still plan to test Factor A first then
Factor B. Then the SAS® printout will be as follows:

Type I Estimable Function for: A

Effect Coefficients

INTERCEPT 0

A 1 L2
2 L3
3 L4
4 -L2-L3-14

12



B 1 -0.1333*L2
2 0.0667*L2
3 0.0667*L2
Type I Estimable Function for: B

Effect Coefficients

INTERCEPT O

B N o
[ = =~ = R =]

[¥S T %
S

This printout represents the Factor A Type I Estimabie Functions matrix

01 00 -1 -01333 0667 0667
L=0 010 -1 0 0 0
0001 -1 0 0 0

Unlike the balanced data case, this is no longer equivalenttoa, = &, forall i = .

Instead we see that Factor B is involved in the test concerning Factor A. This is apparent
because of the non-zero coefficients in the first row of the Factor B columns of the L
matrix. For this example, the Type I Estimable Functions for Factor A are a,, — o, —
0.1333<, + 0.0667<, + 0.06671, , o, — o, and o, — ,. Considering the null hypothesis
H,: Lp =0, the first row of LB =0 yields the equation o, — o, — 0.13337, + 0.06671, +
0.06671, = 0 which represents the first of the Type I Estimable Functions for Factor A.
This may not be a very meaningful hypothesis to the researcher, the terms involving the
decimal factors of Factor B are most likely very difficult to interpret. This is typical of an
unbalanced data set with no empty cells. Note that if empty cells do exist in the data set,
a Type IV Analysis should be used. We will not discuss the Type IV Analysis in this
paper, but discussions of Type IV Analysis can be found in several publications from the
SAS® Institute as well as other sources in the literature. Staying with an unbalanced data
set but changing the cell frequencies will lead to a different L matrix, one where Factor B
still has some non-zero coefficients and thus is involved in the test of Factor A. For this
reason, the Type I Analysis is often discarded when the data set is unbalanced. One last
comment concerning this L matrix, if the underlying model as expressed by E(y) .
contained only the intercept term and the Factor A term, and Factor B was not included in
the problem, then we would have the following L matrix: '
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"In this case we would be testing whether or note, = @, for all i # j. This would be the

case even if the data were unbalanced provided that Factor B was not involved in the
problem.

Based on the SAS® printout, the Factor B Type I Estimable Functions matrix for the
example where Factor A has four levels and Factor B has three levels, and where each
cell has two replicates with the exception of the first cell which has only one replicate is

L_[0000010-J
0000001 -1

As with the balanced data, this is equivalent to testing whether ornotz, = 7, forall i # ;.

So we again see the importance of the sequence in which the factors are to be added when
conducting a Type I Analysis: In our example Factor A was listed first in the model
statement of PROC GLM using SAS® and is therefore to be added to the model before
Factor B. As a result of the unbalanced data set, the Type I Estimable Functions for
Factor A were not very meaningful from a practical point of view, yet the Type I
Estimable Functions for Factor B do turn out to be meaningful. These results would be
reversed if we had listed Factor B first in the model statement of PROC GLM.

An important question to consider when discussing Type I Analysis is, “When is the
Type I Analysis appropriate 7 The Type I Analysis is useful in a model building setting
(Milliken and Johnson, 1992) where we eventually hope to predict the effects of various
treatments. Appropriate model structures include (SAS/STAT, 1988) ANOVA models
with balanced data, purely nested models, and polynomial regression models. As
mentioned préviously, terms must be added to the model in a specified sequence. This is
true regardless of the model structure being used. The Type I Analysis does require that
there are no empty cells in the data set (otherwise a Type IV Analysis may be

appropriate).

There are also some drawbacks to the Type I Analysis. For one, as was pointed out in
an earlier example, when the data are unbalanced, each equation in the hypotheses will
involve parameters of the effect being tested as well as parameters from remaining terms
which follow in the model statement (Goodnight, 1980). This complicates the
interpretation of the hypotheses, possibly to the point that the interpretation is not of
practical use. Another drawback which stems from unbalanced data sets is that the Type
[ Hypotheses will differ according to the cell counts. This implies that the Type I
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Hypotheses are actuaily functions of the cell counts (Pendleton, Tress, and Bremer,
1986). This is rarely the intention of the researcher, quite often the cell counts are merely
artifacts of the experimental or sampling process. The researcher normally has certain
questions concerning the importance or effect of various factors or terms in the model,
the cell counts are not of primary concem. In such circumstances the Type I Analysis
would not be appropriate.

Type Il Analysis

The Type II Sums of Squares are often called or interpreted as partial sums of squares
(Littell, Freund, and Spector, 1991). As we shall see, the Type II SS for a main effect
factor are equivalent to the Type I SS for that factor if it had been added last to the model.
Recall that the Type I SS are sequential and order dependent. In a Type I Analysis, asa
new term is added to the model, it is adjusted for the terms already contained in the
model. This is not the case for Type II SS, they are not order dependent. As an example,
suppose that we are working on a model which would potentially involve an intercept
term and main effect terms for three factors (no interaction terms are being considered).
Factor A can be represented by &,, Factor B can be represented by 7;, and Factor C can be

represented by y, . If we denote the intercept term by p, then the model could potentially
be represented by y,; = y+a, + 7, +y, + &, . However, we may determine that some

of these potential terms are not significantly important to the model and may be omitted.
We can use R-Notation to develop the Type II S8 for this example. The Type II SS for
each factor are as foilows:

Factor A R(ajp,t.y)
Factor B R(z|p,0,y)
Factor C R(y|p,0,7).

So we see that each factor is considered in a model which already includes all other terms
under consideration in the problem. That is, each potential term or effect is adjusted for
all other effects. We also wish to emphasize that each of the Type II SS can be
interpreted as the reduction in residual sum of squares due to adding the specified factor
to a model containing all other potential factors. For example, suppose we obtain the
regression sum of squares for the model y,, = y+a, +y, + &, and denote this sum of

squares as SSR;,,. Next, obtain the regression sum of squares for the model
VY = HTC +T,+Y, +ng and denote this sum of squares as SSR,,,,. Then

R(t|p,00,y) = SSR 3¢ ~ SSR, = SSEm - SSE,,_“ The reduction in residual sum of
squares can then be tested for statistical significance. '

Let us now consider the hypotheses behind the test concerning the statistical
significance of a specified term in a Type II Analysis. As with the Type I Hypotheses,
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we can write the Type Il Hypotheses as H,: The additional term is not important to the
model, versus H,: The additional term is important to the model. The difference between
the two analyses is due to the difference in the assumed format of the model prior to the
addition of the term under consideration. As was mentioned earlier, if the term under
consideration is the last term in sequence to be added to the model, then the Type II 8§
are equivalent to the Type I SS, and thus the two analyses will be equivalent for that term.

. To see a more formal symbolic representation of the Type II Hypotheses, let us
continue with the example involving an intercept term, main effect terms for three
potential factors, but no interaction terms. We can write the model as y = XP + €. This
requires us to partition X as X = (X, X, X, X,) where X, = 1, ®1,®1,®1_, X,
=1, ®I,®1,®1, X,=1,®1 QL ®1,,and X, =1, ®1,®1, I, assuming Factor
A has a levels and Factor B has b levels, Factor C has ¢levels, and that the data are
balanced. If we again follow the convention that X is an »n x p design matrix having rank
r , then rank(X,) = 1, rank(X,) = a, rank(X,) = b, rank(X;) =c, and r =(a-1)+(b-1)
+(c=1)+1= a+b+c-2. Accordingly, p would be partitioned as

Bl a[ 71 71

B a T 7
p= Bz where B, =, By=| . [.Bs=| |, and B, ="}

3 M .

ﬁit ) aa fb yﬁ

So then E(y) = X = X;B, + X,8, + X;B;+ X,B,. Under this model, a test concerning
the addition of Factor B to a model containing all other terms can be represented by the

Type II Hypotheses H,: (H,z — Hy2)E(y) = 0 versus H,: H,;;, —H, )E@) #0. As
before, a variety of equivalent forms of these hypotheses exist. Equivalent forms of the

null hypothesis include H,: X; 154 E(y) = 0 where X; 5 = (I — Hyp) X, or Ho: H; 1, E(y) =

'H
0 where H; 15, = ppo(Xs 124), or H,: A =0 where A = E(y) > ;.'lzsz(y)

form of the null hypothesis which emphasizes the idea of estimability is H,;: Lp = 0 where
L= X, X= (X X1 XsneX2 XiguXs X104 X0). With this notation, we see that

L = 0 simply says that X124 XiBy + X;Ju Xyt Xy XoBs + X0 XBe = X514 EQ)
= () which we already listed as an equivalent form of the null hypothesis.

. The equivalent

The reference distribution for the above test is an F distribution with noncentrality
parameter A. Under the null hypothesis, A = 0, so as with the Type I Analysis, the Type Il
Analysis assumes that the test statistic follows a central F distribution and has the general
form
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SSE, - SSE,

_ m—k
F=—§sE,

n—-m

where SSE, refers to the residual sum of squares for the model implied by the null
hypothesis and SSE, refers to the residual sum of squares for the model implied by the
alternative hypothesis. We have already seen that SSE, — SSE, is equivalent to the R(})
notation which is now the Type II SS for the term being tested. The quantity m—k is
obtained by considering the null hypothesis for the test. As was the case with the Type [
Analysis, the null hypothesis of the Type II Analysis can be written as (Hg — H,)E(y) = 0
where Hg and H, are the perpendicular projection operators representing the

alternative and null hypotheses respectively. So m =rank(Hg) and k = rank(H,), and n
comes from the dimensions of y and X, y:nx1 and X:nx p. Note also that for a Type II
Analysis, the SSE, used in the calculation of the test statistic F is the residual sum of
squares for a model containing all terms under consideration in the problem. So fora
Type II Analysis, m = rank(Hg) = rank(X) = r. Thus, the test statistic could be written as

SSE, —SSE,
r—k
SSE,

n—r

F=

For our current three-factor example with an intercept term, SSE, = R(p,0.,%.7). Also, k=
rank(H,) = rank(X,;)) = 1 +(a-1) + (c~1) = a+ ¢ — 1. Thus, for this current example where we
are conducting a test concerning Factor B, the test statistic is

R(dpa.y)
F=f—c:!---—t:-!—l
SSEyne

n-r

Note that 7 —a —c +1=5—1, and that SSE,,, can be written as simply SSE, so we could
write the test statistic as |
R(ru,a,7)
- —b=1
F=—sE& -
n—r

Recall alSO that R(‘th.l.,a.,'f) = SSR]?J‘ - SSR"_‘ = SSE,J‘ - SSEI?J" SSE|24 = y,(I—Hlﬂ)Y’
Hiy = ppo(Xize), Xype = _(Xl X, X)), and SSEuﬁ = 8SE = y’(I-H)y where H = ppo(X).
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In the preceding example, we concentrated on the Type II Hypotheses for Factor B.
The Type 1T Hypotheses for the other factors are quite similar because, as stated earlier,
these Type II Hypotheses are equivalent to Type I Hypotheses which add the specified
factor as the last factor in sequence to the model.

Table 2 below shows the Type II SS for the three-factor example we have been
discussing. Notice that the test statistic, which is the F-statistic, for each main effect test
involves the Type II SS associated with the term being tested. This is similar to Table 1
which showed the Type I SS and their corresponding F-statistics.

Table 2
Source df SS MS F
Factor A a-1 R{cip,t.y) MSA=R(cjp,t,¥)/(a-1) MSA/MSE ;5
Factor B b-1 R(t|u,0,Y) MSB=R(t]p,0.,7)/(b-1) MSB/MSE,,;,
Factor C c-1 R(viu,0,7) MSC=R(y|u,a,t)/(c—1) MSC/MSE ;4

Error  n-a-b—-c+2 yYy-Ruo,1y) MSE=SSE/n-a-b-c+2)

Total n-1

Note that SSE = y*y-R(u,a,1,y) = y' (I-H)y, that since r =(a—-1) + (b-1}+(c-1)+1=
a+b+c-2, then n—r=n—a-b—c+2. Thus, we could write MSE,;5, = MSE =
SSE/(n—r). Also, note that unlike the Type I SS, the Type 11 SS do not form a partition
of the model sum of squares, that is, SSy,q # SS4 + SSp + 85¢. The Type I SS will not
yield a partitioning of the model sum of squares unless the factors are mutually
uncorrelated (Littell, Freund, and Spector, 1991).

As with the Type I analysis, we may wish to know the Type II Estimable Functions for
a certain problem. As was the case with the Type I S8, the Type I S§ combine the
notions of general estimable functions and Type II Hypotheses. As before, we can write
the Type II Estimable Functions as L where L is called the Type Il Hypothesis matrix
and § is again the parameter vector for the problem. Determining the Type II Hypothesis
matrix L is the key to determining the Type II Estimable Functions for a particular factor
in a particular problem. We saw earlier that the Type 1 Hypothesis matrix L was a
function, in part, of the cell frequencies. This can also be the case for the Type I
Hypothesis matrix when the model used contains interaction terms.

Let us consider a specific example and use PROC GLM with SAS® to obtain the Type
TI Hypothesis matrix L. We begin with a balanced data setin a problem involving two
factors without interaction. The model for this example can be written as
Y = M +e + 7, + &, hence the Type I SS for Factor A and Factor B are R(a|u,t) and
R(1|p,0t), respectively. We see that with the Type II SS, each factor is adjusted for the
other. So unlike the Type I Hypothesis matrix, the Type II Hypothesis matrix will not be
complicated by non-zero entries corresponding to factors of the model that are not
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involved in the hypothesis being tested concerning the parameters of a particular factor.
The importance of this is that the estimable functions for a Type II Analysis are easily
interpreted, and this is true whether the data are balanced or not.

The model statement in PROC GLM is
model y = A B;.

Because the Type II Analysis is not order dependent like the Type 1 Analysis, we would
get the same results for the Type II Analysis if we had used the model statement

model y =B A;.

As with the Type I Analysis, we can have SAS® produce the Type I SS and the Type IT
Estimable Functions by including the options SS2 and E2 in the model statement:

~model y=A B/8S2 E2;.

For the purpose of this example, Suppose that Factor A has 2 levels and Factor B has 3
- levels. Then the Type Il Estimable Functions are represented by the SAS® printout
below.

" Type Il Estimable Function for: A

Effect Coefficients
INTERCEPT 0
A 1 L2
2 L2
B 1 0
2 0
3 0

Type Il Estimable Function for: B
Effect Coefficients

INTERCEPT 0

A I 0
2 0
B 1 L4
L5

3 -L4 - L5.
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By letting in tum L2 = 1, L4 =1, L5 = 1, with all other coefficients set to zero in each
case, SAS® is actually representing the Factor A and Factor B Type II Estimable
Functions matrices '

L=(0 1 -1 0 0 0),forFactor A, and

(OOOIO—l)fF B
—00001_1,oract0r.

. Thus, the Type II Estimable Function for Factor Aise = @, , and the Type II
Estimable Functions for Factor B are 7, = 7, forall i # j. These estimable functions

have very intuitive and practical interpretations. Furthermore, these Type II Estimable
Functions will be the same whether the data are balanced or unbalanced.

If we now change the model to include an A*B interaction term, the Type II SS and
thus the Type II Estimable Functions will be affected. If we represent the interaction
term asy,, the model can now be written asy,, = #+& + 7, +y; + & The Type I SS

are now:
Factor A R(alp,T)
Factor B . R(tlp, 0o}
A*B Interaction R(vlp,o,T).

We see that the Factor A and Factor B terms are not adjusted for the interaction term,
therefore, the interaction term may cause the Type II Estimable Functions matrices for
Factors A and B to have non-zero entries in the columns representing the interaction
terms. This in turn will lead to estimable functions which involve interaction terms.
When the data are unbalanced, the estimable functions can then be difficult to interpret.
Staying with our example where Factor ‘A has two levels and Factor B has three levels,
the addition of the interaction term requires us to change the model statement in PROC
GIMto

model y=A B A*B/SS2 E2; orto model y= A|B / SS2 E2;

(we have included the options SS2 and E2 in order to have SAS® list the Type I SS and
the representation of the Type II Estimable Functions). If the data are balanced, the SAS®
printout which represents the Type Il Estimable Functions for this example is

Type II Estimable Function for: A
Effect Coefficients

INTERCEPT 0
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A |
2
B 1
2
3
A*B 11
12
13
21
22
23
Effect
INTERCEPT
A i
2
B 1
2
3
A*B 11
12
13
21
22
23
Effect
INTERCEPT
A 1
2
B 1
2
3
A*B 11
12
13
21
22
23

L2
-L2

0
0
H

0.3333*L2
0.3333*1.2
0.3333*L2
—0.3333*L.2
-0.3333*L2
—0.3333*L.2

Type II Estimable Function for: B
Coefficients
0

0
0

L4
L5
~L4 - L35

0.5000%L4
0.5000*L5
-0.5000*L4 — 0.5000*L5
0.5000%L4
0.5000*L5
-0.5000*.4 — 0.5000*L5

Type Il Estimable Function for: A*B
Coefficients

0

oo

L7
L8
~L7 L8
-L7
-L8
L7 +L18.
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By setting in turn L.2, L4, L5, L7, and L8 equal to one, with all other coefficients set to
zero in each case, we can use this SAS® printout to find the Type [1 Estimable Functions
matrices for Factor A, Factor B, and the A*B interaction term. They are:

L=(0 1 =1 0 0 0 03333 03333 03333 -0.3333 -03333 m0.3333)
for Factor A,

L—[O 0010 -1 0500 0 -0500 0500 O —0.500}
o o001 -1 0O 0500 -0500 0 0500 -0.500

for Factor B, and
_{00000010—1-101]
oo0000001 -1 0 -11

for the A*B interaction term.

The Type II Estimable Function for Factor Ais
a, - a, +03333y,, +03333y,, + 03333y,, — 03333y, — 03333y, —033337,,. So the
null hypothesis that this estimable function equals zero does involve interaction terms.
Another way to see how these hypotheses are obtained is displayed in Table 3 below.

Table 3
Expected Cell Means

Factor B
1 2 3 Row Means

1 uta, +B+yy | Etathtre | Hra+BETs u=pra + BT

Factor 2 GTm B irn | At EmtBtrn | BYG BT |mmptm BT,

Column( gz, = u+ & + P +7a| fha = A+ T+ B+t = p+ @+ B+
Means

, B - 1¢ I - 18
In Table 3, ““520‘:’ ﬂ=§Zﬂj, y,_=-3—§yﬂ, and y,j=52y,j. So the

=l J=1 i=1
Factor A testable hypothesis is g = &, of, equivalently, @, + 7, = @, +7,. This testable
hypothesis corresponds to the estimable function

1 1
a, "‘"37(?’;1 b 4V +y13)——a2 "’3’(721 +¥n ""?’23)-

g
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This agrees with the Type II Estimable Function for Factor A from the SAS® output.
Similar results hold for the Type II Estimable Functions for Factor B. Note that although
the interaction term does effect the tests for Factors A and B, it does so in a “balanced”
way.

If we now change to an unbalanced data set where the cell counts are as follows,
Factor B

| Tevell ILevel2 TLevel3
Levell | 3 2 3
Factor A |
Level2 | 2 3 3

we will see that the cell counts also effect the results, the coefficients on the interaction
terms will reflect the “imbalance” in the data set. With this unbalanced data set, the

SAS® output changes to

Type Il Estimable Function for: A
Effect Coefficients

INTERCEPT -0

A 1 12
2 -12
B 1 0
2 0
3 0
A*B 11 0.3077*L2
12 0.3077*L2
13 0.3846"L2

21 -0.3077%L2

22 -0.3077*L2
23 -0.3846%L2

Type II Estimable Function for: B
Effect Coefficients
INTERCEPT ©
A 1 0
2 0

A



B 1 L4
2 L5
3 -L4 -L3

A*B 11 0.5692*L4 + 0.0308*L5
12 —0.0308%L4 + 0.4308*L5
13 —0.5385*L4 — 0.4615*L5
21 0.4308*L4 - 0.0308*L5
22 0.0308*L4 +0.5692*L5
23 -0.4615*L4 —0.5385*L5

Type il Estimable Function for: A*B
Effect Coefficients

INTERCEPT 0

A 1 0
2 0

B 1 0
0

3 0

A*B 11 L7

12 L8

13 ~L7-L8
21 -L7

22 -L8

23 L7+L8.

By setting inturn L2, L4, LS, L7, and L8 equal to one, with all other coefficients set to
zero in each case, this SAS® printout is actually representing the Factor A, Factor B, and
A*B interaction Type II Estimable Functions matrices

L=(0 1 -1 0 0 0 03077 03077 03846 -03077 -03077 — 03846)

for Factor A,

__(0 001 0 —1 05692 —00308 -05385 04308 0.0308 -—0.4615]
o 0 0 01 -1 00308 04308 -04615 —00308 05692 - 05385

for Factor B, and

00010—-1—101)
000601 -1 0 -11
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for the A*B interaction term.

Here there is potential for confusion when interpreting the estimable functions. For
example, the Type II Estimable Functions for Factor B are now

7, ~7, +05692y,, —00308y,, — 05385y, +0.4308y,, +0.0308y,, ~ 04615y ,, and
7, — 7, +0.0308y,, +04308y,, — 04615y, — 00308y, +0.5692y,, — 05385y, .

When the data are unbalanced, the addition of the interaction term clearly complicates
the interpretation of the Type II Estimable Functions, possibly making the hypotheses
meaningless to the researcher. Note that the Type II Estimable Functions for the
interaction term are not effected by either Factor A or Factor B. This is because the Type
II SS for the interaction is R(ylut,c.,t) which adjusts the interaction term ¥y for both Factor
A and Factor B. Note also that Factor A does not effect the Factor B Type II Estimable
Functions. Similarly, Factor B does not effect the Factor A Type II Estimable Functions.
This again is due to the nature of the Type II SS for each factor. The Type II SS for
Factors A and B are R(at|u,t) and R(tp,c), respectively. We see that in both cases, each
factor is adjusted for the other. Recall that this was not the case for Type I SS, they were
sequential in nature.

Having discussed some of the properties of the Type II Analysis, let us discuss
situations where the Type II Analysis would be appropriate, as well as some drawbacks to
the Type II Analysis.

Appropriate uses of the Type Il Analysis include model building situations where the
goal is to eventually predict the effect of particular treatment combinations (Milliken and
Johnson, 1992), purely nested ANOVA models, ANOVA models with balanced data sets,
particularly those for main effect ANOVA tests in which no interaction terms are present,
‘and full-rank regression settings (SAS/STAT, 1988, and Littell, Freund, and Spector,
1991). We saw earlier that the Type II Analysis can lead to difficulty when interpreting
the estimable functions in an ANOVA model with interaction terms. Thisisnota -
problem in the full-rank regression setting because the crossproduct terms are viewed
simply as additional independent variables without the usual concem for containment. So
for a full-rank regression model which involves the independent variables x, and x, and
also includes the crossproduct term x, x, , we could write the model as
y=R8 +Bx +px, +fx,x, +£ orequivalentlyas y, = pu+a, +7,+¥, + & -
However, the Type II SS for the independent variables x, and x, , are adjusted for the
crossproduct term. So the Type II SS forx, and x, are R(atjp,.y) and R(z]p,a.,y),
respectively. Thus the Type II Estimable Functions matrices forx, and x, will not be
complicated by non-zero entries corresponding to the crossproduct term, thereby allowing
the Type II Estimable Functions to be easily interpreted. It is also important to note that
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the Type I F -tests are exactly equivalent to the parameter ¢ -tests provided on
regression printouts. In fact the Type II F statistic is equal to the square of the ¢ statistic
from the regression printout. That is to say, for most statistical software packages the f -
tests for individual parameters in a regression model are equivalent to the Type Il F -
tests. For example, the -tests obtained from PROC REG using SAS® are equivalent to
the Type II F -tests obtained by using PROC GLM with SAS®. We emphasize that the
Type Il Analysis is not order dependent. If terms are to be added to the model in a
particular sequence of interest, then the Type I Analysis should be used (assuming the
other properties of the problem are consistent with the Type I Analysis).

Situations where the Type II Analysis may not be appropriate include main effect
ANOVA tests for models which involve interaction terms when used with unbalanced
data sets. We saw earlier that the interaction terms can complicate the interpretation of
the estimable functions in a Type II Analysis. Also, as was the case with the Type I
Analysis, the Type II SS are dependent on the cell frequencies. If we wish to use the
imbalance in the data set to reflect similar proportions from the underlying population,
then the Type II Analysis would be appropriate. However, with an unbalanced data set,
the question being tested is “Is there a significant treatment effect when a particular set of
weights is applied to these treatments 7" The weights applied to the treatments depend on
~ the cell frequencies for the treatments (Pendleton, Von Tress, and Bremer, 1986). If we
do not intend to use these weight to represent the proportions of the treatments in the
underlying population, then the Type II Analysis for effects contained in other effects
such as interaction terms are of questionable merit (SAS/STAT, 1988). Recall that the
Type I Analysis had similar drawbacks when the data was unbalanced.

Type III Analysis

When working in a regression setting, the design matrix X is generally of full-rank. In
such settings, the Type III SS can be represented using reduction notation as was
discussed for the Type I and Type II SS. However, when working in an ANOVA setting,
the design matrix X is typically of less than full-rank. This is the case with the
overparameterized model given in (1) which we have been working with throughout this
paper. In this case, we cannot use the usual reduction notation unless certain non-
estimable constraints are imposed on the parameters in the vector B. For example, for the
two factor model with interaction, we could impose the sum-to-zero-restriction, often
referred to as the “usual assumptions™

Z,a, = z., = Z;(ar)l = Zj(af)j =0.
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Under these restrictions, the resuiting design matrix X* has full column rank. The
reparameterized model can be written as y = X*B* + ¢, and the Type III SS can then be
written as

Factor A R*(ajp,t,y)
Factor B R*(tlp.0y)
A*B Interaction R*(y|p,a,1)

where y represents the interaction term and the notation R* refers to the reduction
notation being applied to the reparameterized model. So for example, R*(at|p,t,y) =
SSE,siced — SSEyg, where “reduced” refers to the reparameterized model which includes
all terms except the one representing Factor A, and “full” refers to the reparameterized
mode! which includes all terms under consideration. More details concerning the R~
notation applied to the reparameterized model can be found in Speed, Hocking, and
Hackney (1978) and other places in the literature. Under the reparameterized model, the
Type III Sum of Squares can be viewed as a partial sum of squares because each main
effect term is adjusted for all other terms in the model. So for a model involving two
factors, A and B, with interaction term A*B included in the model, the Type III SS for
Factors A and B would each be adjusted for the other as well as for the interaction term
(Littell, Freund, and Spector, 1991). When the model does not contain interaction terms,
- the Type III SS equal the Type II SS. We will say more about this when we discuss the
Type III Estimable Functions.

The Type I sums of squares given above (using the reparameterized model) are the
same as those produced by the PROC GLM model statement

model y = A B A*B; or model y = AB;.

They are also equal to the sums of squares developed and used in the Yates’ weighted
squares-of-means method.

Other non-estimable constraints can be used to reparameterize the less than full-rank
model. Other commonly used constraints include the set-to-zero restrictions

a=f=y,=y;=0foraliandj,or
a,=8 =y, =y, =0foralliand;.
It is important to note that imposing different restrictions will result in different Type HI
SS. Thus caution must be taken when trying to represent the Type ITI SS using reduction
notation when the design matrix is less than full-rank (Littell, Freund, and Spector, 1991).

We mentioned earlier that the Type I and Type II Analyses were often considered
inappropriate for unbalanced data because the Types I and I Hypotheses are functions of
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the cell frequencies. The Types I and II Hypotheses are therefore considered weighted
hypotheses, the weights being determined by the cell frequencies. We saw earlier that
these weighted hypotheses were often difficult to interpret and therefore had little
meaning for the researcher. This is not the case for the Type III Hypotheses. The Type
ITI Hypotheses are unweighted hypotheses regardless of whether the data are balanced or
not. Furthermore, the Type III Hypotheses correspond to those hypotheses which the
researcher is most often interested in testing. For a two-factor model without interaction,
the researcher is usually interested in testing hypotheses such as

H_: all Factor A effects are equal, and
H,: all Factor B effects are equal.

In a two-factor model with interaction, the researcher is usually interested in testing
hypotheses such as

H_: there is no interaction effect,

H,: all row means are equal, and

H,: all column means are equal .

The Type III Analysis will test these hypotheses in a way which is not weighted
. according to the cell frequencies.

Perhaps the easiest way to precisely determine the Type I Hypotheses is to use the
cell means model rather than the overparameterized model we have considered thus far in
this paper. The cell means model for the two-factor example is

Ve = Hy + &g fori=12,....a,j=12,..,b, andk=12,...,n, > 0. 3)

The parameter u, is called the population cell mean for the cell involving the i * level of

Factor A and the j*level of Factor B. The cell means are related to the parameters used
in the effects or overparameterized model by

My =p+a,+7,+7, “@)

where p is the grand mean and y represents the interaction term. Before we discuss the
nature of the Type III Hypotheses based on the cell means model, it may be helpful to
briefly review the structure of the data set as explained under the model in (3). If we
assume that Factor A has three levels and Factor B has four levels, then the design can be
displayed using Table 4 below.
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Table 4

Factor B
! 1 2 3 4 i
1] My M His 4 T
I I
Factor A 2] My Hp Mz Ma | M
I I
3 : Hyy M3 Uiy Hag |
|
| Ky K-z M3 K4 TS

Note that 4, = Z/-‘y » My = Zﬂl , and g = ZZ”{

J=l =l j=l
As mentioned earlier, the parameters 4, are called the population cell means. We can
also form the parameters

b
2y

_ J-lixﬁt_and—_g;ylmﬁi

b b Hj a a’

I:

We will refer to the parameters 14, and 72, as the population marginal means (for, in
general, i =12,...,a, andj =12,...,b). Itis also important to recall that we are
assuming that there are no empty cells in the data set, that is, n, > 0 for all i and j.

General formulas for the marginal means can also be written based on the
overparameterized model as

b ) a

jZ:-"J ;79 Zla! Zi’y
— - = - _ i =1
H=u+ o + 5 + 5 and;l_j“'ﬂ‘f'——-a.'*'fj-'- -

Note that these formulas are simply the result of averaging the cell means as explained by
(4) over the various rows and columns of the design when the design is displayed as in
Table 4. Regardless of which version of the formula we use for the population marginal
means, we see that they are not functions of the cell frequencies. For our example where
Factor A has three levels and Factor B has four levels, just use 3 in place of a and 4 in
place of b in the above formulas. We stress that all parameters displayed in Table 4 are
population parameters, and thus so are the population marginal means. Most often,
inferences must be made based on only a sample, not on the complete population. Had
the complete population been available, exact parameter values could be determined and
we would not need to make inferences. So in practice, the population marginal means
will not be known and must therefore be estimated from the sample data. When no
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empty cells are present, the population marginal means are estimable, and the best
estimates for the population marginal means are what we will refer to as the least squares
means. SAS® calls the least squares means the LSMEANS, they are obtained using the
command LSMEANS with PROC GLM. It should be noted that the LSMEANS are not
the same as the means obtained using the command MEANS in PROC GLM. Note also
that the names “population marginal means” and “least squares means” are not used
universally throughout the literature which is the cause of some confusion. General
formulas for the least squares means are

b a a
27 erb' . 24, 2.7
_ = 2 A =1 - i=)
H=H* 0 * b + b and z; =u + a +TJ+—a

where f1,d,,7;, and 7, are estimates found by solving the normal equations X’Xp = X'y

for B. The solution is denoted as ﬁ , and is given by

~
-~ ~ ~

ﬂ=(ﬁ &, a - a T 5 T Yu Yo fab)

Although this solution is not unique, the population marginal means are estimable, so the
least squares means are unique. We can also express the formulas for the least squares
means using the cell means model. For Factor A the formula is

My
Z = ~ b Z.Vyk

YT e i — . _ k=1
ﬂf- b b i

i

Note that 4, is just the estimated cell mean for cell ij. Similarly, for Factor B the formula
is '

. "
Z = . a Zyuk

i, =m-——-—----m-::— whereﬁ,j=2ﬁy and £, m_"”;

i=1 i

as before.

With this review of the cell means model, we can restate the hypotheses listed earlier
as those most often of interest to the researcher. In terms of the cell means model, these
hypotheses are
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H,
H,:
for the two-factor model without interaction, and |

BB -f=ni
H,; &, = i, == [, and
Ho‘ yj !IIJ’ ﬂy +#;jm0 foralli#i'andj;‘-‘j'

for the two-factor model with interaction (Milliken and Johnson, 1992).

In the two-factor model without interaction, these hypotheses can be stated in terms of
the effects model as

H:.aq=a,= - =a,,and
Hin=7n= - =1,

and in the two-factor model with interaction as

] []
Z?’u 27’21 Z?'qf

: J=1 - Jmt
oo+ s B e s

ZJ’n Z?’rz .Z}’w

. =1 -
H;: 7+ a =h T = o =T, 4

> S >3

PV S B MW P
Hy: 7y - p a b =0 fog_ail_ iandj

(Milliken and Johnson, 1992). If we consider the population marginal means as
representing the levels of main effects, then one advantage of using the cell means model
over the effects model becomes apparent: Under the cell means model, the Type III
Hypotheses for main effects are the same whether interaction is present or not.

Again, these are the hypotheses tested by the Type III Analysis, and they are tested in
an unweighted manner in that the cell frequencies do niot effect the hypotheses being
tested. When empty cells are present in the design, the Type III Hypotheses will depend
on which cells are empty and which are not empty, but they still won’t depend on the cell
frequencies. As mentioned previously, when empty cells are present, the Type IV.
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Analysis should probably be used. However, the Type IV Analysis is not a subject of this
paper. To see a summary of the weighted nature of the Type I and Type II Analyses as
opposed to the unweighted nature of the Type III Analysis, refer to page 160 of Littell,
Freund, and Spector (1991) or to page 106 of Speed, Hocking, and Hackney (1978).

As with the Type I and Type II Analyses, the Type III Hypotheses are closely related to
the Type I1I Estimable Functions. If we can determine the Type III Estimable Functions,
then we can determine the hypotheses being tested, and visa versa. So when we consider
the Type III Hypotheses given above, it is easy to see that a basis set of Type III
Estimable functions under the cell means model is

1. — i, for Factor A where i #i', and
ii; — i, for Factor B wherej = j'

if we assume the two-factor model without interaction. If we assume the two-factor
model with interaction, then a basis set of Type III Estimable Functions under the cell
means model is

&, — . for Factor A where i #1',
H, - Ji, for Factor B wherej # j, and
H; — M)~ My + iy for AB interaction where i #i' andj # j'.

In terms of the effects model, for the two-factor model without interaction a basis set of
Type III Estimable Functions can be written as

a - a, for Factor A where i # ', and

7, — 7, for Factor B wherej = j'.

If we assume the two-factor model with interaction, then a basis set of Type III Estimable
Functions under the effects model is

b b
RN
J=l =l
_ b
PRIEDNZ
[ [

a
¥4 —¥r; — ¥y +7r, for AB interaction where / # i and j = j'.

o —a, + for Factor A wherei #1',

T, —Tp+ for Factor B wherej # j*, and (5)

Note that these functions can be written as
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(o, +7.) - (a, +7,;.) for Factor A where i # /',
(r; +7,)—(z; +7 ) for Factor B wherej # j', and
¥y — ¥y =¥y + ¥op for AB interaction where i # ' andj # j'.

For a particular design, the Type II Estimable Functions can also be obtained directly
from the general form of estimable functions. We begin by describing a method for
obtaining the general form of estimable functions. If X is the design matrix, then C*§ is
estimable if and only if C € &X’), the column space of X’. Various spanning sets of
estimable functions can be formed, one of which is X’Xf. Note X’Xf that is a spanning
set of estimable functions of B because XX is a spanning set for Z(X’). Other spanning
sets for &X’) include TX’X for any nonsingular matrix T (T: px p). However, if we
are working under the assumption that X is an 7 x p design matrix having rank r<p,
then X’X and TX’X are p x pwith rank r, and are therefore not basis sets for X’)
(recall that a basis set is a minimal spanning set). We can form a basis set for Z(X") by
forming a matrix consisting of the non-zero rows of the reduced row echelon form of X’X
or TX'X. Call this matrix K’, then K’ is r x p with rank r , and K’ is a basis set for
AX’). Pre-multiplying K’ by any nonsingular matrix L (L: r xr) will produce another
basis set LK’ of &X"). Thus, LK'p will be a basis set of estimable functions of B. The
matrix LK is referred to as the general form of estimable functions (Boik, 1996). As
with the Type I and Type II Analyses, we can use SAS® to determine appropriate LK’
matrices for the Type III Estimable Functions. This will be discussed momentarily, but
we first show how the Type III Estimable Functions may be obtained from the general
form of estimable functions.

To obtain the Type III Estimable Functions, we first require the matrix LK’ mentioned
in the preceding paragraph to be a diagonal matrix. We can label the diagonal entries in
Las ], fori=12,...,r. We then choose the diagonal elements of L so that the
coefficients of estimable functions for each lower order effect are orthogonal to the
coefficients of estimable functions for higher order effects which contain the effect in
question (Boik, 1996, and Goodnight, 1980). So Type III Estimable Functions involve
only parameters of the effect in question and parameters of effects which contain the
effect in question, and the coefficients of lower order effects are orthogonal to the
coefficients of higher order effects which contain the lower order effects. These
requirements are more easily explained using a specific example and using SAS® to help
us determine the general form of estimable functions. Before continuing to an example
involving the use of SAS? to obtain the Type III Estimable Functions, note that if the
model contains no higher order effects such as interaction terms, then the Type I11
Estimable Functions coincide with the Type II Estimable Functions. This is true whether
the data are balanced or unbalanced, recall that when the model contains only main
effects (no interaction is present in the model), the Type II SS are the same whether the
data are balanced or not.
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Let us consider the two-factor model with interaction. Suppose that Factor A has two
levels and Factor B has three levels. The model statement

model y=A B A*B/SS3 EE3;

in PROC GLM of SAS® will conduct an ANOVA test using the Type III 8S and will also
print out a representation of the Type III Estimable Functions as well as the general form
of estimable functions. For this example, the representation of estimable functions is
given below.

General Form of Estimable Functions

Effect Coefficients
. INTERCEPT L1
A 1 L2
2 L1-L2
B 1 LA
2 L5
3 L1-L4-L5
A*B 11 L7
12 L8
i3 L2-L7-L8
21 L4-17
22 L5—-L%
23 L1-12-L4-~-L5+L7+L8

Type III Estimable Functions for: A

Effect CoefTicients

INTERCEPT 0

A 1 L2
2 -L2

B 1 0
2 0
3 0

A*B 11 0.3333*L2
12 0.3333*L2
I3 0.3333*L2
21 —.3333*%.2
22 ~0.3333%L2
23 -0.3333*L2
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Effect

INTERCEPT

A

A*B

Effect

INTERCEPT

A

A*B

By letting in turn each L# (for # = 1, 2, ..., 8) equal one while setting all other L#’s equal
to zero, we can obtain the general form of estimable functions as well as the Type II1
Estimable Functions. We can also see that the Type III Estimable Functions we obtain

Type [1I Estimable Functions for: B

Coefficients
0
| 0
2 0
1 L4
2 L5
3 -L4-L5
11 0.5*14
12 0.5*L5
13 ~0.5*L4 - 0.5*L5
21 0.5%14
22 0.5*L5
23 -0.5*L4 - 0.5*L5

Type I Estimable Functions for: A*B

Coefficients
0
1 0
2 0
1 0
2 0
3 0
11 L7
12 L8
13 ~L7 ~L8§
21 =17
22 -L3
23 L7+L18

agree with those presented in (5).

To see a full explanation of how to obtain the Type III Estimable Functions from the
general form of estimable functions refer to pages 100 and 101 of SAS/STAT, 1988
where a three-step process is presented. Following the three-step process to obtain the
Type III Estimable Functions for Factor A from the general form of estimable functions

for this example, we
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1. setL1=L4=L5=0,
2. not necessary for this example,

3. set L7 =k,, L2 and L8 =k,,L.2, then solve for k,, and k,, so that the Type III
coefficients for Factor A are orthogonal to the Type III coefficients for A*B.

For now, we can write the Type III coefficients for Factor A as:

Effect Coefficients
INTERCEPT 0
A 1 L2
2 -1.2
B 1 0
2 0
3 0
A*B 11 kL2
12 kel2
22  =k,L2
23 (<l+k,; +kL2

Solutions for k,, and k, , are developed below. Note that the Type III coefficients for
A*B are obtained by :

1. setting L1 =L2=L4=L5=0,
2. not necessary for this example,
3. no action needed since A*B is not contained in any other effect.

Thus the Type III coefficients for A*B are:

Effect . Coefficients

INTERCEPT 0

A 1 0
2 0

B 1 0
2 0
3 0
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A*B 11 L7
12 L8
13 -L7-L8
21 ~-L7
22 -L8
23 L7 +18.

Let C, be the column matrix containing the coefficients for Factor A, and let C,.; be the
matrix of coefficients for A*B. Then the orthogonality requirement can be expressed as
C,’C,.; = 0. For our example, this says that

ky, L2-L7 +k;,L2-L8 — L2.L7 ~ L2-L8 + k;; L2-L7 +1 L2-L8 + k;,L2-L8 +
Ky L2-L7 + k,,L2L7 + Ky, L2-L8 ~ L2L7 ~ L2-L8 +k;, L2-L7 + k;,L2-L8 +
k, ,L2-L.7 + k,L2-L8 =0 for all choices of L2, L7, and L8. (6)

So, if we set L2 =L7 = 1 and L8 = 0, then (6) says that 2k,, + ks, =1. If we then set L2
=L8=1and L7 =0, we get the equation k,, + 2k;, = 1. Solving these equations fork,,
and k, ,, we find k,, = kg, = 1/3. This result is consistent with the SAS® printout for the
Factor A Type III coefficients. This process can also be used to find the Type 111
coefficients for Factor B.

Having obtained the representation for Type ITI Estimable Functions using SAS®, we
note that the Type III coefficients for Factors A and B do follow the requirement of
orthogonality, inner products of Factor A coefficients with A*B coefficients equal zero as
do inner products of Factor B coefficients with A*B coefficients. For example, set L2 of
the Factor A coefficients to one, then C, is

11oto1 oy
33 3 3 :

a3 | e

CA=(01—1000

Next, set L7 to one and L8 to zero for the A*B coefficients. This produces one column of
the matrix C,.;. Then set L7 to zero and L8 to one, this produces the second column of

c (0000001041—1 0 3

A0 00006001 -1 0 -1 )

Finally then, C,C.y =0. Where 0 =(0 0). Similar results hold for Factor B, if we set
L4 of the Factor B coefficients to 1 and L5 to zero, we get a column of coefficients for
the matrix Cy. We then set L4 to zero and L5 to one and get the second column of
coefficients for the matrix Cp. The result is '
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-1
2

-1
2

1
00010 -1 3
C, = 2
00001 -10

Nj— ©

Using the same matrix C,.g as constructed above, we get

, 00
CoaCan=|y o =

Having discussed the nature and properties of the Type III Analysis, let us mention
situations where the Type III Analysis would be appropriate, as well as some situations
where the Type [II Analysis would not be appropriate.

We saw earlier that the Type I and Type II Analyses were appropriate for model
building situations. In the model building setting, different effects (main effects and
higher order effects such as interaction effects) are considered and tested in order to
establish a “best” model, probably to be used for making predictions. The exact nature of
~ the hypotheses being tested is usually not of primary interest. Recall for example that the
Type I and Type II Hypotheses for unbalanced data and a design which includes
interaction terms can be very difficult to interpret from a practical point of view. Yet the
Type I and Type II Analyses can be appropriate in such settings because the Type I and
Type I1 Analyses are more concemned with testing the importance of the various terms in
the model than with the exact hypothesis being tested. This is generally not the case for
the Type III Analysis. For the Type III Analysis, the “primary interest is in testing
interpretable functions of the parameters in a given model. That is, the model is known;
there is no model building. Instead, one concentrates on testing functions of the known
model” (Boik, 1996). Put another way, the primary objective of the Type III Analysis is
comparing the effects of different treatments. The Type III Analysis is especially
versatile in that the interpretations of the tests are the same whether the data are balanced
or not, and, under the cell means model, the main effects tests are the same whether
interaction terms are present or not. For this reason, the Type III Analysis is generally
considered the appropriate analysis to use when the goal of the analysis is to compare
main effects in a model which contains interaction.

In general we can say that the Type III Analysis is the appropriate analysis to use for
ANOVA designs when the data are unbalanced (assuming no empty cells are present).
As was mentioned at the time we presented the Type III Hypotheses and the Type Il
Estimable Functions, the Type ITI Analysis tests an unweighted hypothesis concerning
various effects of interest. These Type III Hypotheses did not depend on the cell
frequencies. This can be considered appropriate if the cell frequencies are not intended to
represent corresponding population proportions. For example, it may be that the data set
was intended to be balanced but some data was lost or otherwise had to be discarded form
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the data set. In such circumstances, it seems reasonable to say that the resulting
imbalance in the data set should not change the hypotheses the researcher originally
intended to test. However, there may be instances where just the opposite is true. We
may at times want to conduct a weighted analysis to preserve, as part of the analysis, the
population proportions of the different treatments as contained in the underlying
population. In such cases the Type II Analysis should be used, or the Type I Analysis if
the sequence of the terms is also important to the analysis. The cell frequencies will then
represent the treatment proportions of the underlying population.

Summary

By way of summary, the following guidelines are suggested when conducting analyses
where the data set contains no empty cells:

Type I Analysis - To be used in model building situations where effects are to be
considered sequentially. Unbalanced data will complicate the hypotheses being tested
possibly resulting in hypotheses which do not correspond to those of interest to the
researcher.

Type I Analysis — To be used in model building situations where the effects are to be
tested in the presence of all other effects under consideration. Unbalanced data will
complicate the hypotheses being tested if the model contains higher order terms such as
interactions. The resulting hypotheses may not be of interest to the researcher.
Therefore, the Type II Analysis is generally not considered appropriate for unbalanced
data sets when interaction is included in the model. The Type II Hypotheses will be the
same as the Type III Hypotheses when the model contains only main effects.

Type III Analysis —- Generally used when the researcher desires to compare effects in a
specified model, not in a model building situation. The Type III Analysis is an
unweighted analysis and is therefore the method most often recommended for unbalanced
data sets. The Type III Hypotheses are the same whether the data are balanced or not.
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Appendix

MATLAB programs

The following MATLAB programs will calculate the L matrices needed to obtain the
various estimable functions. Each program is based on a two-factor design. The
presence or absence of interaction will be indicated.

The following program determines the Type 1 Estimable Functions for balanced data
where the design has no interaction term. In this case we are assuming Factor A has four
Jevels and Factor B has three levels, and that there is only one replicate per cell. The
value n mentioned in the program may be changed to allow for other cell frequencies
provided that the data remain balanced. Note that Factor A is added to the model first,
then Factor B.

a=4,

b=3;

n=l; -
x1=kron(kron(ones(n),ones(h,1)),ones(a,1))
x2=kron{kron(ones(n),ones(b,1)),eye(a))
x3=kron(kron(ones(n),eye(b)),ones(z,1))
x=[x1 x2 x3]

hl=x1*pinv(x1"*x1)*x1'
x2_1p=x2"(eye{a*b)-h1)

Istar_a=[x2 Ip*x1 x2_l1p*x2 x2 1p*x3]
eps=1000*eps;

1_a=rref{lstar_a)

x12=[x1 x2]

h12=x12*pinv(x12"*x12)*x12'
x3_12p=x3"*(eye(a*b)-h12)
Istar_b={x3_12p*x1 x3_12p*x2 x3_12p*x3]
1_b=rref(Istar_b)



The following program determines the Type I Estimable Functions for unbalanced data
where the design has no interaction term. In this case we are assuming Factor A has three
levels and Factor B has four levels, and that there are two replicates in each cell except
the cell where both factors are at level one. In that cell there is only one observation. The
matrix N mentioned in the program can be changed to allow other numbers of levels for
the factors as well as other cell frequencies. Note that Factor A is added to the model
first, then Factor B.

N=[1222;2222;2222];
{a,b]=size(N);

x={I;

s=(];

ea—eye(a);

eb=eye(b);

forj=1:b

fori=l:a

for k=1:N(i,j)

s(k,:)={1 ea(i,:) eb(j,)};
end;

x=[x| S']';

s=[];

end;

end;

X

x1=x(:,1);
x2=x(:,2:2+(a-1)};
xI=x(;,a+2:atb+1);

hl=x1*pinv(x1™*x1)*x1";

[rt}=size(hl);

x2_1p=x2"*(eye(r)-h1);
Istar_a=[x2_lp*x1 x2_lp*x2x2_1p*x3];
eps=1000*eps;

1_a=rref{Istar_a)

x12=fx1 x2};
h12=x12*pinv(x12"*x12)*x12";
(r.tl=size(h12);

x3_12p=x3"*(eye(r)-h12);
Istar_b={x3_12p*x1 x3_12p*x2 x3_12p*x3];
1_b=rtref{(Istar_b)

M
1I



The following program determines the Type I Estimable Functions for unbalanced data
where the design does have an interaction term. In this case we are assuming Factor A
has three levels and Factor B has four levels, and that there are two replicates in each cell
except the cell where both factors are at level one. In that cell there is only one
observation. The matrix N mentioned in the program can be changed to allow other
numbers of levels for the factors as well as other cell frequencies. Note that Factor A is
added to the model first, then Factor B, then finally the interaction term.

N=[122222222222};
{a,b]=size(N);

x=[];

s={I;

ea=eye(a);

eb=cye(b);

for j=1:b

fori=1:a

for k=1:N(i,j)

s(k,:)=[1 ea(i,) eb(i,")];
end; .

x..._..[x! S‘}';

s=[k

end;

end;
X

x1=x(,1);
x2=x(;,2:2Ha-1)});
x3=x(:,a+2:a+b+1);

x123=x;

x4=[];

k=1;

for i=1:a;

for j=1:b;

x40, K=x2(:,1).* %35
k=k+1;

end;

end;

x=[x x41;

hl=x1*pinv(x1"*x1)*x1";

fr.t]=size(hl);

x2_lp=x2"*(eye(r)-hl);

Istar_a=[x2_lp*xI x2_lp*x2 x2_lp*x3 x2_lp*x4];
eps—=1000*eps;

1_a=rref{Istar_a)
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x12=[x1 x2];
h12=x12*pinv(x12"*x12)*x12";
[rt}=size(h12);
x3_12p=x3"*{eye(r)-h12);

Istar_b={x3_12p*x1 x3_12p*x2 x3_12p*x3 x3_12p*x4];

I_b=rref{Istar_b)

h123=x123*pinv(x123"*x123)*x123";
[r.t]=size(h123);
x4_123p=x4"*(eye(r)-h123);

Istar_ab={x4_123p*x1 x4_123p*x2 x4_123p*x3 x4_123p*x4];

1_ab=rref{Istar_ab)

The following program determines the Type II Estimable Functions for balanced data
where the design has no interaction term. In this case we are assuming Factor A has four
levels and Factor B has three levels, and that there is only one replicate per cell. The
value n mentioned in the program may be changed to allow for other cell frequencies

provided that the data remain balanced.

a=4;

b=3;

n=1;
x1=kron({kron{ones(n),ones(b,1)),ones(a,1))
x2=kron({kron{ones(n),ones(b,1)),eye(a))
x3=kron(kron(ones(n),eye(b)),ones(a,1))
x=[x1 x2 x3]

x13=[x1 x3]

h13=x13*pinv(x13"*x13)*x13¥'
x2_13p=x2"*(eye(a*b)-h1i3)
Istar_a=[x2_13p*x1x2_13p*x2 x2_13p*x3]
1_a=rref(lstar_a)

x12=[x1 x2]

h12=x12*pinv(x12"*x12)*x12'
x3_12p=x3"*{eye(a*b)-h12)
Istar_b=[x3_12p*x1 x3_12p*x2 x3_12p*x3]
1_b=rref{lstar_b)
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The following program determines the Type II Estimable Functions for unbalanced data
where the design has no interaction term. In this case we are assuming Factor A has three
levels and Factor B has four levels, and that there are two replicates in each cell except
the cell where both factors are at level one. In that cell there is only one observation. The
matrix N mentioned in the program can be changed to allow other numbers of levels for
the factors as well as other cell frequencies.

N={1222;2222;2222];
{a,b]=size(N);

x=[];

s={];

ea=eye(a);

eb=eye(b);

for j=1:b

fori=l:a

for k=1:N(1,i)

sk, =[1 eai.2) b3, );
end;

o x=[x'sT;

s={};

end;

end;
X

xt=x(;,1);
x2=x(:,2:2+{a-1));
x3=x(:,a+2:at+b+1);

x13=[x1 x3};
h13=x13*pinv(x13'*x13)*x13";
[r.t]=size(h13);

x2_13p=x2"*(eye(r)-h13);

Istar_a={x2 13p*x1 x2_13p*x2 x2_13p*x3];
eps=1000*eps;

1_a=rref(istar_a)

x12=[x1 x2];
h12=x12*pinv(x12'*x12)*x12',
[r.t]=size(hi2);

x3_12p=x3"*(eye(r)-h12);
Istar_b={x3_12p*x1 x3_12p*x2 x3_12p*x3];
| b=rref{istar_b)



The following program determines the Type II Estimable Functions for unbalanced data
where the design does have an interaction term. In this case we are assuming Factor A
has three levels and Factor B has four levels, and that there are two replicates in each cell
except the cell where both factors are at level one. In that cell there is only one
observation. The matrix N mentioned in the program can be changed to allow other
numbers of levels for the factors as well as other cell frequencies.

N=[1222;2222;2222];
[a,b]=size(N);

x=1;

s=[I;

ea=eye(a);

eb=eye(b);

for j=1:b

fori=1:a

for k=1:N(i,j)

s(k,.)=[1 ea(i,:) eb(,)};
end;

F{xl St]t;

s={];

end;

end;

X

x1=x{:,1);
x2=x{:,2:2+a-1));
x3=x(:,a+2:a+tb+1};

x123=x;

x4={];

k=1;

for i=1:a;

for j=1:b;

x4(: k)=x2(:,i).*x3C.j);
k=k+1;

end;

end;

x=[x x4];

x13=[x1 x3};

h13=x13*pinv(x13"*x13)*x13";

{r,t]=size(hl3);

x2_13p=x2"*(eye(r)-h13);

Istar_a=[x2_13p*x1 x2_13p*x2 x2_13p*x3 x2_13p*x4];
eps=1000*eps;

1_a=rref{istar_g)
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x12=[x1 x2];

hi2=x12*pinv(x12'*x12)*x12',;

[r,t]=size(h12);

x3_12p=x3"(eye(r)-h12);

Istar_b=[x3_12p*x1 x3_12p*x2 x3_12p*x3 x3_12p*x4];
1_b=rref(Istar_b)

h123=x123*pinv(x123"*x123)*x123";

[r,t}=size(h123);

x4_123p=x4"*(eye(r)-h123);

Istar_ab=[x4_123p*x1 x4_123p*x2 x4_123p*x3 x4_123p*x4];
{_ab=rref{lstar_ab)

Designs which do not contain interaction will lead to Type IIT Estimable Functions which
coincide with the Type II Estimable Functions whether the data are balanced or not, so
we do not give separate programs for Type III Estimable Functions under such
conditions.

The following program determines the Type III Estimable Functions for unbalanced data
where the design does have an interaction term. In this case we are assuming Factor A
has three levels and Factor B has four levels, and that there are two replicates in each cell
except the cell where both factors are at level one. In that cell there is only one
observation. The matrix N mentioned in the program can be changed to allow other
numbers of levels for the factors as well as other cell frequencies.

N=[323;233];
ets=ets*0.00001;
[a,b]=size(N);
x={};

s=[1;

ea=eye(a);
eb=eye(b);

for j=i:b

fori=l:a

for k=1:N(i,j)

s(k,:)=11 ea(i,) eb(j,’)];
end;

x=[x' S']';

s=[1

end;

end;
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x1=x(,1);
x2=x(:;,2:2+a-1));
x3=x(:,a+2:a+b+1);

x123=x;
x4=[];

- k=1

for i=1:a;

for j=L:b;

x40, K)=x2(:,1).*x3(.,i);
k=k+1;

end;

end;

x=[x x4]

L=rtref(x'*x)';
L=L{(;,1:rank(L}))

{n,p1]=size([x] x2]);

[n,p2]=size(x3);

[n,p3]=size(x4);

rl=rank{[x1 x2]);

- r2=rank([x1] x2 x3])-ri;
r3=rank(x)-rl-r2;

G=rref(x"*x);

G11=G(2:rl1,2:pl);

G22=G(r1+1 11 +2,pl+1:pl+p2);
G13=G(2:rl,pl+p2+1:pl+p2+p3);
G23=G(ri+1:r1412,pi-+p2+1:pl-+p2+p3);
G33=G(r1+2+1:x1+r2+13,pl+p2+1:pl+p2+p3);
HG33p=G33"*pinv(G33*G33')*G33;
N=[G11 G13-G13*HG33p];

M=[G22 G23-G23*HG33p];
tIa=rref(N)';

Sb=tref(M)";

1_a=t3a(:,1:rank(t3a));
1_b=t3b(;,1:rank(t3b});

[r.t}=size(i_a);

za=zeros(b,t);

|_a=[zeros(t,1) 1_a(l:a,’)’ za'l_a(a+1l:r,))T
[r,t]=size(l_b);

zb=zeros(a,t);

1_b={zeros(t,1) zb' 1_b']'

h=x*pinv(x"*x)*x’;
h123=x123*pinv(x123"*x123)*x123';
T=(h-h123)*x;

K3ab=rref(T*T)';
1_ab=K3ab(:,1:rank(K3ab))
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The General form of the F-statistic for a Type I Analysis

While it is not the intention of this paper to develop the distribution of the test statistic,
it should be beneficial to at least mention a point or two concerning the construction of
the F-statistic as it relates to the test of hypothesis being conducted. When the F-statistic
is viewed in the context of a test of hypothesis which tests a null hypothesis of the form

Hy: B)=X*p*
versus an alternative hypothesis of the form
H,: E(y)=Xp

where X*B* is a nested reduction of XB, and XB represents the complete model which
involves all terms under consideration in the problem, then the F-statistic takes on the
following format (Boik, 1996):

SSE, —SSE,

_ m—k
F=—%sE,

n—m

where SSE, refers to the residual sum of squares for the model implied by the null
hypothesis and SSE, refers to the residual sum of squares for the model implied by the
alternative hypothesis. We have already seen that SSE, — SSE, is equivalent to the R(|)
notation which is the Type I SS for the term being tested. An easy way to think of the
quantity m— k is to look at the null hypothesis for the test. As presented in the preceding
example, the null hypothesis can be written as (Hg — H)E(y) =0 where Hg

and H, are the perpendicular projection operators representing the alternative and null
hypotheses respectively. With this notation, m = rank(Hg) and k =rank(H,). Finally,

n comes from the dimensions of y and X, y:nx1 and X:# x p. These results parallel
those described for the F-statistic of a Type II Analysis as presented on page 17.






