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1 Introduction

Ridge Regression (RR) is a method of estimating the parameter # in the linear model
y* = X*f+¢ when there are near linear dependencies among the columns of X*. Introduced
by Hoerl and Kennard(1970), RR produces a biased estimate of 8 with a smaller variance
than the Ordinary Least Squares (OLS) estimator. As an alternative to OLS, the primary
advantage of RR over OLS are more stable and more interpretable parameter estimates.
Terminology will be introduced followed by a short review of multicollinearity, the prob-
lems associated with it, and some of the diagnostics used to detect it. Next, the concept of
RR will be introduced as well as some of its mathematical development. Although there are
a number of different techniques used to find the “best” biasing constant used in RR, this
paper will concentrate on just one of these techniques, the Ridge Trace (RT). The RT is a
graphical technique and is the easiest method of finding a biasing constant .tha,fc reduces the

variance of the estimator. Finally, an example will be presented.

2 Terminology

Before reviewing multicollinearity, it is necessary to introduce the following terminology.

The assumed linear model that will be used throughout this paper is ¥* = X*# + ¢ where:

n: Number of observations

p: Number of m'easurements taken on each observation

y*: nxl r.a,ndom vector of measured centéred and scaled responses
y* o~ (X*ﬁ: U'EIP)

€: nx1 random vector of unknown error terms



€~ (0,0°1,) where 0 is a nx1 vector of zeros

X nxp matrix of known uncentered and unscaled explanatory values

X*: nxp matrix of known centered and scaled explanatory values
(also referred to as Tegressors)

B: px1 vector of unknown coefficients

B: px1 vector, OLS estimator of B

Br: pxl vector, RR estimator of .

The OLS estimator for the parameter Bis f = ((X*YX*)"'(X*)'y*. This estimator
can also be shown to be the best linear unbiased estimator (BLUE) of . Best refers to
the fact that among linear unbiased estimators, # has the minimum variance. A potential
problem with this estimator is no upper bound on its variance. A biased estimator with a
corresponding smaller variance may exist.

The RR estimator is fp = (X*YX*+kI,)"1(X*)'y* where k is the biasing constant, often
referred to as the shrinkage parameter. This estimator is derived by modifying the normal
equation from (X*)' X" = (X*Yy* to (X*)YX* + kL)B = (X*)'y*. The main objective of
RR is to find an appropriate value for & such that the MSE(,B};) is less than the MSE(j).

The nxp matrix of explanatory values, X*, is assumed to be centered and scaled. Center-
ing implies the mean of each column vector of the original explanatory matrix X is subtracted
from each element of the corresponding column vector. Next the colump vector is scaled by

dividing each element by the square root of the sum of squared deviations from the mean.



Let z;; be the i** element in the 7% column from the original explanatory matrix X.

Then,

o (zi; — &;)

T -

fori={1,2,3,..,n} and j = {1,2,3, ..-;p}. Centering the data. is not always recommended

or required.: Brown (1977) and Myers (1990) give further details. The response vector y
is centered and scaled in the same manner as the explanatory variables. There are other
methods of scaling besides the one described above. When the regressors and response vari-
ables are scaled in this way there is no constant tefm in the model. In other words, the Y
intercept is zero. In addition, (X*)'X* can be interpreted as the “correlation matrix” for the
regressor variables. All elements of (X*)Y X~ take on values in the interval [-LI]. Alth.()ugh
the explanatory variables are not random, the stfucture of (X*YX* does measure linear
dependeﬁce among the regressor variables (e.g. ones along the diagonal). One advantage of
computing this é‘correla-ntion matrix” is that it can be used for the detection of multicollinear-
ity which will be discussed.later. Another advantage for ceﬁtering and scaling the data is
that the magnitude of the regression coefficients are comparable. Without centering and
scaling the magnitude of the coefficients are not necessarily related to their importance in

the estimated model (Hoerl and Kennard, 1988).

3 Multicollinearity

Multicollinearity in a regression setting is defined to be a linear or near linear dependence
between two or more column vectors of the X* matrix. For example, if the three column

vectors 7, z3, and =} are linearly dependent, then there exists a set of nonzero constants, say



{ay, a3, 83}, such that 3" a;z; = 0. If the three vectors are approximately linearly dependent
then 3" a;z; =~ 0. In either case multicollinearity is said to exist in QLS.

The degree to which multicollinearity is present is subjective and depends on the strength
of the linear relationships among the regressor vectors of X*. The explanatory vectors are
often treated as independent. In reality, however, these vectors are ;‘arely independent.
Often the regression model is used to estimate or predict changes in a response when there
is a unit change in a particular regressor. Changing a particular regressor value while all
remaining regressors are held constant is easy to do mathematically, but in actuality, when
one regressor value is changed the value of the other regressors related to it will also change.

The degree of linear dependence between the regressors can effect the stability of the OLS
estimator. In the extreme case of absolute linear dependence between two or more column
vectors, the matrix (X*)'X* is less than full rank and therefore not jnvertible. Thus, no
unique solution to the normal equation exists. In the case of approximate linear dependence,
problems still occur depending on the severity of-the -multicollinearity. One of the major
concerns when multicollinearity is present is the increase in variance of the OLS regression

coeflicients:

Var(f) = Var[((X*)X*)"1(X")y]
= (XY X)HX) Var(y) X (XY X°) !

— UZ((X*)IX!:)—I.

Because ((X*)’'X*)"! is nearly singular, mverting it is similar to reciprocating a scalar

that is close to zero. The result is some of the elements along the diagonal of ((X*)'X*)~1



are large (Birkes and Dodge, 1993). For this reason the variance of B is said to be mflated.
Another way to display the problem associated with multicollinearity is to look at the squared

distance between § and 8, (Hoerl and Kennard, 1970). Defining this value as

CEE=(h-BY(B-9).
Its expectation,
E(L") = E(B'B) - 28'E(B) + '8
where
E(B'B) = '8+ o*r{((X*YX*)]

and tr = trace operator. Therefore,
E(L®) = o™t ((X*)X*)™"] (1)

Because (X*)X* is symmetric it is also diagonalizable (Searle, 1982). Diagonalizable
implies the matrix (X*)'X* can be written as (X*YX* = PAP' where P is an orthogonal

matrix, Hence, PP = PP' = I, and A is a diagonal matrix composed of eigenvalues of

((X*)'X*) along the diagonal. Also from Searle (1982),

((Xg)fX*)—l — (PAPJ)-—I

= PATP



Because tr(AB) =tr(BA), when multiplication is conformable,

(XY XAl = tr{P’A~1 P)
= tr(P'PATY)
= tr(A7)

= D! (2)

where ); is the i diagonal element in A. As the severity of multicollinearity increases
some of the eigenvalues of (X*) X* decrease, and from equations 1 and 2 the expected squared
distance from 4 to B increases. The precision of the estimator 3 decreases as multicollinearity
increases. Because the variance of f}’ 1s inflated, the regression coefficients may appear with
signs opposite than what were expected from a subject matter expert (Mullet, 1976). This
poor precision in estimating individual model parameters does not necessarily imply that the
estimated model is a poor predictor (Gunst, Mason & Weber, 1975). Despite the fact that
the elements of # are poorly estimated, a linear combination of these estimates may provide
satisfactory prediction. But, poor prediction can occur when predictors do not follow the-
same collinearity pattern that were used in the computation of regression coefficients.

These are some of the problems caused by multicollinearity. Some diagnostics for multi-

collinearity will now be presented.

4 Detection of Multicollinearity

As stated earlier, when the explanatory variables are centered and scaled (resulting in z*),

the matrix (X*)’X* can be interpreted as a correlation matrix. Recall that correlation is



a measure of linear dependence between two quantitative variables. Therefore, (X*YX~*
may be useful in identifying if multicollinearity is present. If collinearity exists between two
regressors, the elements in (X*)'X* corresponding to these two regressors will be “large”, i.e.
close to one. The disadvantage with this method occurs when the collinearity exist between
three or more regressors, because this diagnostic may not detect it.

A second technique that can b-e used as a diagnostic of multicollinearity are the F-statistics
and p—wvalues given in most computer packages’ regression output. If the F-statistic for the
overall regression is significant but the individual p — values for the regression coeflicients
are not significant, multicollinearity may be present (Gunst, Mason & Weber 1975).

Another technique suggested bsr Gunst, Mason & Weber (1975) for detection of multi-
collinearity is computing the deterrﬁinant of the (X*}X* matrix. Because (X*)X* is in
cofrela,tion form, the determinant is bounded between zero.a,nd one. The closer the value of
the determinent is to zero the stronger the evidence that mulficollinea,rity exists. When the
determinant is equal to zéro there is an exact linear relationship between two or more of the
regressors. If the determinant e.quals one, the column vectors of (X*)' X* are orthogonal and
therefore independent.

The coeficient of determinantion, RE, is éalcula.ted by regressing the j% column vector
of X*, (:r;;‘), on the p — 1 remaining column vectors. If z; 1s close to a linear combination
of the remaining p — 1 vectors then R \&ill be large, close to one. Therefore, R? values for
j = {1...p} can be used to diagnose multicollinearity. A different coefficient of determination,
R?j), which is calculated by regressing the response y* on all regressor variables except z%,
can also be used as a multicollinearity diagnostic. This method is performed by comparing

Rfj) against R’ (the coefficient of determination of y”* regressed on X*). If Rl is close to



R?, a problem with multicollinearity may exist. The problem with this method occurs when
z} is just a poor explanatory variable of %" and should not be included in the model.
Another diagnostic of multicollinearity are the cigenvalues of (X*)X*. The closer any
one of the eigenvalues is to zero the more severe the problem of multicollinearity. According
to Myers (1990), the severity of multicollinearity can be measured in terms of the ratio of

largest to smallest eigenvalues. This ratio, ¢, is called the condition number.

. /\Ma::
A1\4‘1’71,

C

Large values of ¢ indicate multicollinearity may be a problem. Myers (1990) states a
condition number exceeding 1,000 should cause concern about the effects of multicollinearity.
In addition, the number of eigenvalues close to zero indicates how many regressor variables
are involved in the collinearity.

The last diagnostic covered is the Variance Inflation factor (VIF). Each of the p elements
of  has an associated VIF. Recall the variance of j is o ((X*YX*)"!. The jt diagonal
element of ((X*)'X*)~" is equal to the factor by which the variance of the j* element of 8
is inflated over 0. The name VIF comes from the fact that the variance of the elements
are inflated by VIF over the a.rﬁount if there was no collinearity within the columns of the
X* matrix. In the-ideal case ((X*YX*)™! = I, and all VIF’s are one. The coeflicient of

variation Rf 1s related to the VIF as follows:

VIF(S) = =g

As linear dependence between 7 and the remaining p—1 regressors increases, R? increases



and likewise VIF(&;) increases. Similar to the condition number diagnostic, there is no exact
cut off value in which one can say with absolute certainty that multicollinearity is going to be
a significant problem. Myers (1990) gives a “rule of thumb” of VIF values in excess of 10 as
an indication that multicollinearity is causing problems with the estimation of the regression

coeflicients.

5 Ridge Regression (RR)

Once multicollinearity is identified as a problem, RR provides an alternative to OLS regres-
sion. Recall the RR estimator is fp = (X*YX*+kL,)~ 1(X"‘)’y* where k > 0 and when k& = 0
the RR. estlmator 18 equivalent to the OLS estimator. Hoerl ancl Kennard (1970) provide
some motivation for why RR works. In this section their work is outlined and supplemented

by a few more mathematical details.

The RR. estimator can be written as a function of the OLS estimator,

Br = ((X°YX"+ kD) (X)y
=+ KXY X)) (XY X XYy
= (L + KXY X))

A

= ZB. (3)
To simplify notation we define W as:
W= ((X*YX* + RL)™. (4)

10



The relationship between Z and W js:

Z = W(X'YX

3
)
i

(Xx)fX*
W7Z = (X*YX*+4 kI, - kI,
Wz = Wl _kj,

Z = I,—kW. (5)

Next the squared distance between Br and 8 is calculated. This value is a measure of
how good [??R 15 as an estimator. The expected value of this squared distance is the mean

square error (MSE) of the RR estimator.

Ly = (Br— B (Br — B)

ElLR)

It

E|(Z8 - BY(Z7 — B)] substituting equation 3

E(B2'26) - 28'ZE(f) + #'8

f

= E[B'2'28)- 2828+ 58

where

BIBZ 28] = Bl X (XY X)) 2 2((X Y X (7).
To help reduce the above equation an identity from Boik (1995) is used.

Let y ~ (#,%) and A : nxn matrix of constants. Then,

11



Ely' Ayl =t(A>]) + ' Ap.

Note: This identity does not require normality.

So,

EIf'7'28) = t(X*(X*)X) " Z'2((X*YX) ™ (X*)o?I,)
HB (X)X (XY X2 (XY X*) (XY X

= cM((X*YX)1Z2'2)+ 87 %8,
By substitution,

E[LR] = SPu((XYX*Y1Z2'Z)+ 87 Z8 - 28'28 + 58
= (XY X*)Z' 7)Y+ B(Z'% - 2Z + 1,)B
= SHe(((X*YX")ZZ) + (Z — LY*B since Z = Z'
= o*e((X™)X*)1Z'Z) + B'(I, — kW — 1)B substituting 5
= oMr((X*YX*)'2'Z + p(—kW)B

= aztr(((X*)’X*)_IZ’Z) +EB((X*) X + kI)7%B. (6)
Now define the two terms in equation 6 as follows:

no= Cu(((X*YX*)Z'2) (7)

1 = FA(XTYX*+kL)8. (8)

12



Next examine equation 7.

1= cul((XY X)L + k(XY X)) Z)
= Sul(((X*YX*) + kL) 2]
= cu[WZ]
= o*te[W(I, — kW)] substituting equation 5
= oW — kWY

= (X)X + kL)) — k(XY X7) + k1,)~2]).

Recall, A; represents the i*» eigenvalue of (X*YX*. Since W and W? are symmetric they
are both diagonalizable. This allows for easy computation of their eigenvalues.
The i** eigenvalue of ((X*)'X* 4 kI)™!is TA.—}HT)
The ™ cigenvalue of ((X*)YX* + kL) is (—A'—ik? forz={1,2,3,...,p).

Now write equation 7 in terms.of eigenvalues:

2 Ai
Nm=0 Zm (9)

Equation 9 is related to the variance of Br as demonstrated below.

Var(fr) = Var(Zp)
= Var(Z{{(X*) X"y Y X*)'y)
— UZZ((X*)’X*)_I(X*)’X*((X*)!X*)_IZ"

= o’ Z((X*) X"y 7.

13



The diagonal elements of Z((X*)'X*)~1Z’ are the RR VIF’s. Next applying the trace

operator:

r[Var(Br)] = o*tr(Z((X*)X*)2)
= (XY X*)2'7)

= M.

Therefore, -, is the sum of the diagonals of Va,r(BR) and is referred to as the total variance
(Hoer] and Kennard 1970). ‘The expected value of L} is the mean square error of 85 where

¥z can be considered a squared bias term.

MSE(&R) =7 + 2.

Returning to equation 9 it is apparent that 7 is a decreasing function of k. As & increases
the variance of the RR estimator decreases. In the next section some theorems for 4, and

2 are presented.

6 Ridge Trace (RT)

It can be shown that equation 9, the squared bias of fg is a continuous, monotonically
increasing function of k with an upper bound A'4. See Hoerl and Kennard (1970) for proofs.
The MSE of Bg is the sum of two expressions 4, and 7,, where 4, is a decreasing function
of k£ and -, is an increasing fungtion of k. The goal is to find a value of k such that the

MSE(fR) is less than MSE()@). It is not obvious that a value of k satisfying these conditions

14



even exists. Hoerl and Kennard (1970) give a proof of the following theorem:
There exists a k > 0 such that E[L4(k)] < E[LE(0)] = o* (XY X*) = Var(B).

This is a very powerful theorem because it guarantees the existence of a k such that the
MSE of the RR estimator is smaller than the MSE of the OLS estimator. It is important to
emphasize that this theorem only states that a k exists, but it does not provide any clues
on how to find a value of £ satisfying this condition. Furthermore, Birkes and Dodge (1993)
state that there is no explicit formula for k. Because the MSE(ﬁR) depends on the unknown
parameter f#, one can not be absolutely certain the value of k chosen is best.

There are many methods for choosing reasonable values of & (Myers 1990). One of the
easiest and most intuitive methods is the ridge trace (RT). The RT is a two dimensional
graph of fr versus k which assists the data analyst with choosing a better estimator ( in
terms of variance) than OLS. The domain of k is usually in the interval [0...1], but can be
larger. In the RT, there is a separate curve for each element of 8. When k equals zero
the RR estimator reduces to the OLS estimator. When the data are sertously affected by
multicollinearity the OLS estimator is unstable since it has a large variance. As the value
of k increases, the variances of the regression coeflicients decrease, allowing the estimates to
become more stable. A value of & is usually chosen when the coefficients have stabilized.

RT is a subjective method because it is dependent upon the analyst to choose the value &
that reduces the variance by the desired amount at the expense of introducing bias into the
estimate. When choosing k& one should try to minimize the variance while maintaining the
interpretability of the regression coefficients. In other words, one should not choose a k at the

expense of ending up with RR coefficients that do not make sense to a subject matter expert.
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An important point worth restating is that the MSE(BR) can not. be calculated explicitly
because the parameter 4 is unknown. The variance of the estimator is being reduced at the
expense of introducing bias. This is why it is critical that the estimates make sense or “agree
with” a subject matter expert. Hoerl and Kennard (1970) list a set of guidelines which will

assist the user in choosing %:

* At a certain value of k the system will stabilize and have the general characteristics of

an orthogonal system.

o Coeflicients will not have unreasonable absolute values with respect to the factor for

which they represent rates of change.

e Coefficients with apparently incorrect signs at £ = 0 will have changed to have the

proper sign.

¢ The residual sum of squares will not have been inflated to an unreasonable value. Tt
will not be large relative to the minimum residual sum of squares or large relative to

what would be reasonable variances for the process generating the data.

7 Numerical Example

The sample data in Table 1 was taken from Longley (1967). SAS REG (version 6.11) and
MATLAB (version 4.2a) were used to perform the analysis. The explatory data consists of -

the following six variables:

z1: GNP Implicit Price Deflator

z9: GNP

16



z3: Unemployment
z4: Size of Armed Forces
#5: Non-Institutional Population 14 Years of Age and Over

xg: Year

The response variable y is total derived employment, in thousands. Prior to any analysis
the data were centered and scaled. The six variables were regressed on the response using

OLS, the results are shown below.

Analysis of Variance

Source  DF  Sum of Squares Mean Square F Value Prob> F

Model 6 0.99548 0.16591 366.984  0.0001
Error 10 0.00452 0.00045
U Total 16 1.00000

Root MSE 0.02126 R-square 0.9955
Dep Mean 0.00000 Adj R-sq  0.9928

C.V. 3.4047425 T15
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Paramter Estimates:

Parameter Standard T for H,: Variance

Variable DF  Estimate Error  Parameter=0 Prob> |T'| Inflation

i 1 0.046282 0.2475 0.187 0.8654 135.5324
z3 I -1.013746 0.8992 -1.127 0.2859 1788.5135
x3 I -0.537543 0.1233  -4.360 0.0014 33.6189
Ty I -0.204741 0.0403 -3.083 0.0005 3.5889
zy 1 -0.101221  .0.4248 -0.238 0.8165 399.1510
zg 1 2.479664 0.5858 4.233 0.0017 758.9806

Note the negative signs on the coefficients for z; (GNP) and &} (population). One would
expect as these variables increased the derived employment would also increase, but with
this model j.ust the opposite happens. The d.a;taJ were then éheckéd for the p.resvence of any
coilinearity. Five of the six VIF’s exceed the upper limit value of 10, Whicﬁ is an indication
that multicollinearity is adversely affecting the OLS coefficient estimates. VIIs this large
reduce our confidence that the regressibn estimates are correct. Standard errors for # and
x5 are large compared to the corresponding coefficients and neither is significant. A possible
reason for this are the srﬁa,ll eigenvalues of the (X*)'X* matrix. The eigenvalues for the

(X*)'X* matrix are:
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4.60338

1.17534

0.20343

0.01493

0.00255

0.00038

Notice the last three eigenvalues are extremely small compared to the others, which causes

the variances of the estimates to be inflated. The condition number

. 4.60338
~0.00038

fnr)
—

12, 000

is over ten times larger than the recommended upper bound. Consistent with the VIF’s this

condition number is another strong indication that multicollinearity is present in the data.

The correlation matrix, (X*)X*

shown below is also consistent with the condition number

and VIF diagnostics by indicating there is a strong pairwise linear relationship between some

of the regressors.

%
z7  1.0000
z; 0.9916
©% 0.6206
z;  0.4647
zy  0.9792
5 0.9911

1.0000

0.6043

0.4464

0.9911

0.9953

1.0000

-0.1774

0.6877

0.6683
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Because of the obvious multi collinearity problem in this data set, RR is a viable alternative
to OLS regression. Figure 1 is a RT graph of the standardized data over the interval {0,1].
It is apparent most of the action within the graph occurs for values of & less than 0.1. For
k values greater than 0.1 .RR estima,tes seem to stabilize. In order to get a more detailed
graph the RT is plotted again in Figure 2 but the & axis is magnified. From this graph the
regression coefficients stabilize between 0.008 and 0.02. Table 2 lists coeflicient estimates,
VIF’s, standard error eigenvalues and condition numbers for eight & .values. At k= 0.018
all VIF’s are below the recommend upper bound and the algebraic sign on coefficients for z3
and 2§ are positive. So k = 0.018 would be a reasonable choice for the shrinkage parameter.

This example has demonstrated that when multicollinearity is present in the data, the

RR gave a better estimate of the unknown parameter than the OLS estimate.
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Table 1

Ly

L2

Z3

4 Ty

Zg

83

234289

2356

1590 | 107608

1947

60323

88.5

259426

2325

1456 | 108632

1948

61122

88.2

258054

3682

1616 | 109773

1949

60171

89.5

284599

3351

1650 | 110929

1950

61187

96.2

328975

2099

3099 | 112075

1951

63221

98.1

346999

1932

3694 | 113270

1952

63639

99

365386

1870

3647 | 115094

1953

64989

100

363112

3578

33560 | 116219

1954

63761

"101.2

397469

2904

3048 | 117388

1956

66019

i04.6

419180

2822

2857 | 118734

1956

67857

108.4

442769

2936

2798 [ 120445

19567

68169

110.8

444546

4681

2637 | 121950

1958

66513

112.6

482704

3813

2552 | 123366

1959

68655

114.2

502601

3931

2514 | 125368

1960

69664

1157

518173

4806

2672 | 127852

1961

69331

116.9

554894

1962

70651

4007

2827 | 130081




Table 2

k=10 -k =10.006
Variable || Coefficient | Standard VIF Eigenvalue || Coefficient { Standard | VIF Eigenvalue
Error Error
©} 0.0463 0.2475 | 135.5324 0.0149 0.1849 0.1586 | 25.7329 0.0209
5 -1.0137 0.8992 | 1788.514 0.0026 0.3279 0.0878 7.8972 0.0086
z3 -0.6375 0.1233 33.6189 0.0004 -0.3147 0.0532 2.8932 0.0064
] -0.2047 0.0403 3.5889 0.2034 -0.1311 0.0467 2.2352 0.2094
@t -0.1012 0.4248 399.151 1.1753 0.0076 0.1515 | 23.4806 1.1813
Tg 2.4797 0.5858 | 758.9806 4.6034 0.7148 0.1456 | 21.6995 4.6094
Condition Number = 11509 Condition Number = 720
Table 2 continued
k =0.008 k= 0.010
Variable || Coefficient | Standard VIF Eigenvalue [| Coefficient | Standard VIF Eigenvalue
Error Error
z] 0.2089 0.1475 20,7173 0.0229 0.2244 0.1377 17.164 0.0249
z 0.3353 0.0719 4.9287 0.0106 0.3384 0.0618 3.4542 0.0126
T3 -0.3072 0.0542 2.7995 0.0084 -0.3013 (.0549 2.731 0.0104
T3 -0.1252 0.0477 2.1636 0.2114 -0.1203 0.0482 2.1043 0.2134
z 0.0561 0.1356 17.5178 1.1833 0.09 0.1234 13.7889 1.1853
Tg 0.6274 0.122 14.1651 4.6114 0.5686 0.1051 9.9957 4.6134
Condition Number = 549 Condition Number = 444 ]




TFable 2 continued

k=0.012 k=10.016
Variable || Coefficient | Standard | VIF Eigenvalue [| Coefficient | Standard | VIF Eigenvalue
Error Error
@} 0.235 0.1291 | 14.5096 0.0269 0.2481 0.1147 | 10.826 0.0309
o 0.3397 0.0547 2.608 0.0146 0.34 0.0456 [ 1.7118 0.0186
z3 -0.2962 0.0554 2.6737 0.0124 -0.2873 0.0559 | 2.5748 0.0164
z} -0.1161 0.0486 2.0532 0.2154 -0,1089 0.0489 | 1.9669 0.2194
o ¢.115 0.1136 | 11.2419 1.873 0.1492 0.0986 | 8.0057 1.1913
3 0.528 0.0925 7.4446 4.6154 0.4686 0.0748 | 4.6094 4.6194
Condition Number = 372 Condition Number — 282
‘Table 2 continued
k=10.018 k= 0.02
Variable || Coeflicient | Standard | VIF Eigenvalue || Coefficient | Standard | VIF Figenvalue
Error Error
E 0.2523 0.1087 | 9.5086 0.0329 0.2554 0.1033 | 8.4214 0.0349
@3 0.3396 0.0426 [ 1.4543 0.0206 0.339 0.04 1.2635 0.0226
z -0.2833 0.0561 | 2.5299 0.0184 -(.2795 0.0561 | 2.4871 0.0204
x3 -0.1057 0.049 1.9293 0.2214 -0.1027 0.049 1.8944 0.2234
z3 0.1614 0.0927 6.9222 1.1933 0.1714 0.0876 6.0582 1.1953
xd 0.4482 0.0685 34731 4.6214 0.4314 0.0632 3.1501 4.6234
Condition Number = 251 Condition Number = 227 J




