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Introduction

Crossover designs form one class of commonly-used experimental designs. They
are called Crossover Designs because experimental units receive first one treatment and
are then typically crossed over to receive a second and perhaps a third or a fourth
treatment. That is, each experimental unit is administered each treatment in a
" predetermined sequence.

Crossover designs, like other designs, are used to compare the effects of
treatments on experimental units. Crossover designs are appropriate for experiments in
which experimental units are expensive and few in number.

In a crossover design, the between-experimental-unit variation is eliminated by
applying all treatments to the same experimental unit. However, one problem which may
occur is that the effect of the current treatment may carry over and affect the effect of the
next treatment. This problem is called the carryover effect. Carryover effects occur when
the effect of the current treatment has not worn off by the time the next treatment is
applied. Sometimes a carryover effect can be eliminated or minimized by inserting a rest or
washout period between administrations of the treatments.

The simplest crossover design has two different treatments denoted by A and B.
Half of experimental units receive A first and then crossover to B. The other half receive B
~ first and then cross ovér to A. Thus, there are two different treatment sequences A—> B
and B —> A.

In this design, two treatments, A and B » are studied for two equal length periods.
The basic pattern of this design is

Period Sequence
1 2
1 A B
2 B A

Units are chosen at random and assigned at random to a sequence of treatments,
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The main advantage of a crossover design is that the treatments are compared
within units. That is, all treatments are observed on the same experimental unit. Therefore,
every unit can prov1de a direct comparison of treatments. The disadvantage is possibly
encountering a carryover effect.

The typical crossover design model consists of a sequence effect, a period effect, a
treatment effect, carryover effects and an experimental unit error term. More details will

be given when discussing examples.

A brief history

Crossover designs are used frequently in clinical trial experiments, However, the
earliest applications were in agriculture field experiments. The first crossover design
referred in the literature appeared in 1852. It was run by John Bennett Lawes and Baron
Justus von Liebig who disagreed about the nutrition of crop plants. Lawes and JH.
Gilbert seem to be the first to have been explicitly concerned with carryover effects.

The foundation on which all ensuing work on crossover designs rested was a paper
by Cochran, Antrey and Cannon in 1941, They explained 3 feeding ways carried over the
period of a single lactation of eighteen Holstein cows.

Williams, in 1949, formalized the ideas of Cochran, Antrey and Cannon. In 1950,
he produced a follow up paper in which designs balanced for pairs of residual effects are
considered in more detail. Quenouille, in 1953, was the first to put forward the idea of a
completely balanced crossover design. In 1955, Federer gave a design for three treatment,
six sequences and seven periods for estimation of direct and residual effects.

In 1961, Sheehe and Bross gave a procedure which is easier than Williams for
constructing designs which are balanced for preceding treatments. In 1969, Davis and
Hall discussed cyclic incomplete block designs interpreted as crossover designs. Petterson,
in 1973, showed how the cyclic designs of Quenouille could be extended to a design for V
treatments, 2V periods and V? sequences . In the same year, Hall and Williams introduced

cyclic superimposed design.



3

Berenblut and Webb, in 1974, showed that if there was an autocorrelated error
structure then Williams(1949) designs minimized the generalized variance for randomized
block and latin square arrangements. In 1975, Hedayat and Afsarinejad gave a summary of
designs balanced with respect to sets of direct and residual effects.

This is only a brief description of some of the early uses of crossover designs. For
more information of review and use of these designs see Bishop and Jones (1984) and

Jones and Kenward (1989).
Definitions, Assumptions and Models

For crossover designs, we assume that t treatments are to be compared. There are
s sequence groups and experimental units within each group receive t treatments in a
specific sequence corresponding to that group. The n; experimental units are randomly

assigned to each sequence.

For example, three treatments (A, B and C) can be compared by using three
periods. There might be six sequences of subject corresponding to the six different

treatment sequences, as shown in Table 1.

Table 1 Six Sequences with Three Treatments

Sequence Period

mm#wm-\

COWW> >~
W>O0>0wn
>W>0wWo]w

A model to describe the response corresponding to the k™ unit in period j of

sequence i is

Y= p+Su+ i+ o+ Ao+ ey



where
M is the grand mean.
S i is the effect of k in sequencei,i= 1,23,..s k= 1,2,3,...,n
7ti is the effect of period j , j = L,23,....p
Ty is the direct effect of the treatment administered in period j of sequence i
A 61 is the effect of the carryover of treatment administered in period j-1
of sequencei. By definition, 1 a0 =0.
€ij 1s a random error for unit k in period J in sequence i such that
e ~ N(©,07)

So, for example, the model terms for the three responses observed on the k™ unit

in each of groups 1 and 2 of our six-group example would be:

Group 1: Yy = pr+ Su+ 71+ 7, + ey
Yin = B+ Su+m,+ To+ A1+ e
Y5 = M+ Su+ s+ 75+ Ar+ e

Group2: You = f+Su+ i+ 7, + ey
You = p+Su+ ot t54 A1+ ey
Yo = M+ Su+ms+ Tat+ As+ e

For example, if there are 5 subjects per group, the ANOVA Table is shown in
Table 2:



Table 2 Analysis of Variance for six-group example

Source d.f.
Between units 29
Within units
Periods 2
Treatments 2
Carryover 2
Residual 54
Total 89

Two-period crossover designs

The two-period crossover design for two treatments, (with s=2 and p=2), is also
called the 2 X 2 crossover design. There are two possible sequences. Each unit is assigned

to either sequence 1 (A—> B) or sequence 2 (B—> A). The expected response for units is
as follows:

Period
Sequence 1 2
1 M7+ T, ﬂ*‘ﬂ.z*"rz"‘ﬂr:
2 l‘l+”‘+rz ﬂ'*’ﬂ.z""rﬁ/%z

We assume the Sy’s are random effects which are independent and identically
distributed with mean 0 and variance O,. Tiand 7, are the direct treatment effects of

treatment A and B, and A ; and A, are the corresponding carryover effects, respectively.
The Analysis of Variance

The analysis-of-variance table for 2 X 2 crossover designs was first presented by

Grizzle in 1965, but his results were only correct for the special case of n; =

. A correct
table was presented by Hills and Armitage in 1979 as shown in Table 3.



Table 3 Analysis of Variance Table

Source df SS EMS F
Between-subjects:
Carry-over 1 2y, — \2 2 2 -
Sh&v O\H ~J, V Smmv A\w_ - NNV +N0.w + o.N wﬁaﬂ.u\ w\m\\umw
3 resiaua
B-S residual Aﬁ +n, - Nv M Wukwnl MH 207 +¢? Direct Treatments M,
i=1 k=1 2 o W — 8 residual MS
Within-subjects:
_ Direct treatments 1 nyn, - - = \? 2 Periods MS
mﬁs_iwvA.w\: Vi TV, +.VNNV 2nym, A _ v AN_ I»nv 2 -
Periods 1 miy - \2 2nn, 2 2
m?”ii A.w\: l.v\z +.w\8 u\mw.v Ashst \va +o
(adjusted for treatments)
W-S residual A 2 2 # 2 n 2 2 2
n, +n, INV S, u\ .u\c J.
2225, IMMINIIMM 25
i1 j=1 k=1 i=] k=1 i=1 j=1 By 3 2m,
Total 2 2 n 2
Anom)1 555y 2




From the above table, it is obvious from the EMS column that it is only sensible to

test the hypothesis that 71 = 7, ifit can first be assumed that A 1= Ao
Example 1. Grizzle’s Data

Table 4 Data from Grizzle’s(1965) Paper

Person

Treatment 1 2 3 4 5 6 7 8
Sequencei

A 0.2 00 -08 06 03 1.5

B 1.0 -0.7 0.2 1.1 0.4 1.2
Sequence2

B 13 -23 00 -08 -04 -29 -19 -29

A 0.9 1.0 06 -0.3 -10 17 -03 0.9

Table 5 gives an analysis of variance table for the above data by using SAS whose

code and output are shown in the Appendix I.

Table 5 Analysis of variance for Grizzle’s

Source d.f. S.8 M.S F P-value
Within units:
Carryover 1 4.57 4.57 4.57 0.0538
B-S residual 12 12.00 1.00
Between units:
Treatments 1 5.14 5.14 413 0.0649
Periods 1 6.24 6.24 5.01 0.0449
W-8 residual 12 14.94 1.245
The Interpretation

To test the null hypothesis that 4,= A, > an F-ratio is calculated as follows:

FC = Carryover MS / B-S residual MS

i

457/1.00 = 4.57



The associated p-value is 0.0538 , so there is marginally insufficient evidence to
reject the null hypothesis at an & = 0.05 level.

Therefore, we can proceed to test the null hypothesis that 7,= 7,

FT = Direct treatment MS / W-S8 residual

I

5.14/1.245 = 4.13

The associated p-value is 0.0649. There is insufficient evidence to reject the null
hypothesis at an & = 0.05 level.

To test the null hypothesis that 7, = 7, , we calculate

FP = Periods MS / W-S residual MS

6.24/1.245 = 501

The associated p-value is 0.0449. At an @ = 0.05 level there is sufficient evidence
to reject the null hypothesis.

Since we have only two treatments to compare, we can also test these hypotheses
with two sample t-test.

Testing A,= /1,
For the null hypothesis that 4 ;= A, , the statistic

A,

1
" 2
2
(O' , m)

has Student’s t-distribution with n;+ny-2 d.f where

a

ta = Y+ Y i for the K unit in sequence 1



tx = You+ Yo forthek™ unit in sequence 2

A2 2 n

Cr=33 (l‘ﬂt - ;n.)z /n +n,—2 for the sample pooled variance

= k=l

"= n+n
nn

o2

Using Grizzle’s data, we obtain EL =0.8333 , Zz_ =-0.8 and A.= 1.6333. Also

> (¢, — .Y =87976 and > (e, ~1. ) = 15.22. The pooled estimate of & is

k=] k=1

-

O, = 2.0011 and the t-statistic is

¥

T = 1.6333/(2.0011*%)” = 2.1381

The critical value is toys12 = 2.179. There is insufficient evidence to reject the null

hypothesis at @ =.05 level.
Testing 7= 7, (assuming A= A2)

For the null hypothesis that 7, = 7, the statistic

n

7
T=—»s

(o‘j m/ 4)2
follows a Student’s t-distribution with n;+ m -2 d.f. where

dyw = Yiu- Yin for the K™ unitin sequence 1

dua = You- Yoy forthe k™ unitin sequence 2
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o =22:Zm:(da ~Z)2/nl +n -2

=1 k=1

moBtn

nn

12

Using Grizzle’s data, we obtain d, =-0.2333, d. = -1.675 and 4. = 0.7208,

6

Also Z(d1 . —671.) = 2.1534 and Z(du - 32) = 27.735. The pooled estimate of

=1

O, is O, =2.4869 and the t-statistic is

24869 14

X -t Y12

T = 0.7208/(
’ 4 48

= 1.6916.

The critical value is 2.179. There insufficient evidence to reject the null hypothesis
at @ =.05 level

Testing 77, = 7, (assuming A4;= 1))

For the null hypothesis that 7z, = 7, the statistic

N

7 =—"s

(o-; m/ 4)2
has Student’s t-distribution with n;+n,-2 d.f where

Cu = Yin- Y ix for the k™ unitin sequence 1

Cx = You- You =-dy forthe k™ unitin sequence 2



Table 6
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Group 1 (AB) Group 2 (BA)
Subject Periodl Period2 t;, dy, subject Period1 Period2 i, dy,
1 0.2 1.0 1.2 -0.8 1 1.3 0.9 22 0.4
2 0.0 -0.7 -0.7 0.7 2 2.3 1.0 -1.3 -3.3
3 -0.8 0.2 -0.6 -1.0 3 0.0 0.6 0.6 -0.6
4 0.6 1.1 1.7 -0.5 4 -0.8 -0.3 -1.1 -0.5
5 03 04 0.7 -0.1 5 -0.4 -1.0 -1.4 0.6
6 1.5 1.2 2.7 0.3 6 -2.9 1.7 -1.2 -4.6
7 -1.9 -0.3 2.2 -1.6
8 -2.9 0.9 -2.0 -3.8
sum 5 -14 sum -6.4 -13.4
mean 0.8333 -0.2333 mean -0.8 -1.675
A - - n H Ty N A H _ —
Ai=1t —1 =16333 ro = mT_, ~d,]= 07208 7, =l -2 ]=-09541
> (6, -2.) =87976 >(d, - d.) =21534 n=6
> (6, -) =1522 > (., - d.) =27735 n =8
i=1 i=1
"2 " 2 n+n 14
o, =2.0011 o» = 24907 m=—"0 o 7
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Using Grizzle’s data, we obtain C = -0.2333, C, = 1.675 and 7T, = -0.9541. Also

O, =2.4869 and the t-statistic is

24869 14
P X —_—

1% Y2 = 22391

T = 09541/ (
The critical value is 2.179. There sufficient evidence to reject the null hypothesis at
o = .05 level.

Two Treatments in a Three-period Crossover Design

There are several possible sequences that can be constructed by using three-period
designs with two treatments. In this case, the four sequences were selected. There are
three different four-sequence designs which can be constructed by using different pairing
of the dual sequences. A dual of a sequence is obtained by interchanging the A and B
treatment labels. For example, the dual of ABB is BAA. These three designs are listed

below.
Table 7
Sequence Period
1 2 3
1 A B A
2 A B B
3 B A B
4 B A A
Table 8
Sequence Period
1 2 3
1 A B B
2 B A A
3 A A B
4 B B A
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Table 9
Sequence Period
1 2 3
1 A B A
2 B A B
3 A A B
4 B B A

The model can be written as
Y= p+Su+ 7+ Tep+ Agin+ ey
The terms in this model are described in the previous topic.

To make the analysis easier, we define

0 ifk=1
1 if thetreatmentin periodk =1 is A
—1 if thetreatmentin periodk =1 is B

I

Xie

where X, is treated as a continuous variable and reparameterize the model as
Yijk= M+ Su+ i+ Tgy+ ﬂx& + €

The expected responses for the different experimental units are as follows:

Sequence
Period 1 2 3 4
1 H+TT 1+ T, M7+ T H+70+7T, M7 +T5
2 HAYTATHAL,  p+mtTt A, HATr T+ Ay U+mt T+ A,
3 BATHT Ay Pt A,  p+rmat44, HATs+T 1+,
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The Analysis of Variance

There are two estimates of T1-7 available. The first one is a within-

experimental-unit comparison. The another is a between-experimental-unit comparison.

Table 10 Within-Experimental-Unit ANOVA Table

Source df

Experimental units n-1

Treatment 1
Carryover 1
Period 2
W-S residual pn-n-4

Table 11 Between-Experimental-Unit ANOVA Table

Source d.f.
Treatment 1
B-S residual n-2

To get a single estimate of 7 -7, the two estimates are combined using the
method for combining two estimates of the same parameter with different variances. The

combined within-between experimental unit estimate of 7 -T2 s

1A) 2 (1) 2
(=-<) (/4: (=) + o )ee),
T, -1, =
()%
O.b o-w
The large sample variance of the combined estimate is

A 0_20_2
Var[(z', - rz) ]= —t
2 2
l ol +o°
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and can be estimated by

Az I3

o +6

b w

2 "

A confidence interval of 7 -7, can be constructed by using an approximate t-

value as
.o (%,) Fona * (%-)
| (%9 ) " (%3)
where

u is the d.f. of the between error mean square
v is the d.f. of the within error mean square.
Example 2. Data from Milliken and Johnson (1992) :

Table 12 Data of a crossover design with two treatments in three periods

Person
Sequence [Period | Treatment] 1 2 3 4 5

251 220 253

276 243 27.7

245 216 257

269 203 259 252

28.7 240 28.7 26.6

281 25.0 28.0 285

255 274 26.2

23.7 27.9 271

249 246 25.0

203 251 222 258 225
222 262 250 265 236
206 257 229 245 209

1

»
WON 2 WON S WN - WA -
PPWD>UWT>>W>
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Table 13 and Table 14 give an analysis of variance table for the above data by

using SAS whose code and output are shown in the Appendix II.

Table 13 Within-Experimental-Unit ANOVA Table for Data in Table 12

Source d.f. 8.8 M.s F
Experimental units 14 178.49

Treatment 1 12.37 12.37 13.07
Carryover 1 478 4.78 5.09
Period 2 22.14 11.07 11.78
W-S residual 26 2443 0.94

Table 14 Between-Experimental-Unit ANOVA Table for Data in Table 12

Source d.f. 8.8 M.S F
Treatment 1 15.38 15.38 4.53
B-8 residual : 13 44,12 3.39

From output in Appendix II,

(z,~7,),=-1189 o, =03277
(r.- 7)), = ~6.089 o, =2.8602

So, we get for the combined within-between experimental unit estimate of 7 ;- 7 2
(z,-z), =-1252
1, =2057

and o’ =01060.
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Thus, a 95% confidence interval of 7 ;- T 18

-1.252 + 2.057(0.1060)"

(-1.922 , -0.582)

or

At an a =.05 level, there is sufficient evidence to reject the null hypothesis,

T1- T2 Subjects receiving treatment B tend to have a higher response than subjects

receiving treatment A .

Three Treatments in a Three-Period Crossover Design.

There are many possible sequences that can be constructed by using three period

designs with three treatments. In this case, the six sequences were selected because we

assume each treatment occurs in each sequence.

Table 15 Sequence of three treatments with three period

Sequence
Period} 1 2 3 4 5 6
1 A A B B C ¢C
2 B Cc A C A B
3 (o] B cC A B A

The model can be written as

Y= ﬂ+Sﬂc+7z‘j+7(i,j)+/1xﬁ * €k

The expected responses for the different experimental units are as follows:
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Table 16 The expected response for unit

Period
Sequence 1 2 3

! BTt T, Mo T A, M T A,
2 Hn T yomataid, MAT T A,
3 M+TT =+ T, ,u+72'2+1'1+12 IU+7Z'3+1'3+/11
4 M+TT T, /l+;z-2+73+],2 /,t+71'3+7.'l+2,;
5 HZoTs  yigarald, H+TT T A,
6 HAZnTs pigutald, pemarel,

We define a new carryover parameter as

Ao =A%, +AX  +Ax

T(k-1) 1Y (k) 24 (k-1) 3; (k-1)

where

1if treatment A occurred in period k — 1 of sequence i
wen ) 0if otherwise

Similarly, X

2

@y and X, - are defined. Then the model can be reparameterized as :

Y= p+Sa+mi+ty+Ax  +Ax +Ax + e

1 li(k—]) 22 (k1) 37 3(k1)
The Analysis of Variance

In this case, the between-experimental unit comparisons consists of information

about the carryover effect.



Table 17 Within-Experimental-Unit ANOVA Table

Source d.f

Experimental units n-1

Treatment 2
Carryover 2
Period 2
W-S residual pn-n-6

Table 18 Between-Experimental-Unit ANOVA Table

Source d.f
Carryover 2
B-S residual n-3

Example 3. Data from Milliken and Johnson (1992) :

Table 19 Data from a Three-period Crossover Design with Three treatments

Experimental unit
Sequence] Period | Treatment 1 2 3 4 5 6
1 1 A 201 233 234 197 192 2292
2 B 203 248 248 213 209 220
3 C 256 287 283 257 259 282
2 1 A 247 238 236 202 198 215
2 Cc 294 287 264 262 237 255
3 B 27.5 241 250 214 233 208
3 1 B 243 264 199 239 205 218
2 A 232 264 237 268 232 238
3 C 301 323 255 308 263 291
4 1 B 209 219 220 233 188 246
2 (o 275 286 274 307 279 208
3 A 243 231 245 266 246 266
5 1 Cc 240 259 255 279 253 257
2 A 218 237 220 254 264 24.7
3 B 216 239 234 244 258 249
6 1 Cc 232 239 280 246 277 215
2 B 189 215 253 227 235 18.1
3 A 238 254 281 238 256 228
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Table 20 and Table 21 give an analysis of variance table for the above data by

using SAS whose code and output are shown in the Appendix I1I.

Table 20 Within-Experimental-Unit ANOVA Table for data in table 19

Source d.f 8.8 M.S F
Experimental units 35 360.97
Treatment 2 249.72 12486 124.86
Carryover 2 4.45 2.23 2.23
Period 2 106.64 53.32 53.32
W-S residual 66 66.19 1.00

Table 21 Between-Experimental-Unit ANOVA Table for data in table 19

Source d.f S.8 M.s F
Carryover 2 0.0615 0.0307 0.0100
B-8 residual 33 120.2609 3.64432

From output in Appendix ITI, we get

Table 22 Analysis of Treatment Differences for Within-Experimental-Unit

Parameter Estimate Standard Error
T.-7, 0.83 0.264
T-Ts -3.12 0.264
To- T -3.95 0.264

/1 .- 2; , -0.27 0.354

A .- A , 0.46 0.354

/1 - l , 0.73 0.354
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Table 23 Analysis of Treatment Differences for Between-Experimental-Unit

Parameter Estimate Standard Error
2{ l -0.30 234
1- A2
2, 2 0.11 234
1- /L3
ﬂ, 2} 0.19 2.34
2- s

Atan @ = 0.05 level, there is sufficient evidence to reject the null hypothesis, 7,=
T2=7;. That is, at least one of those treatments affect the response differently than the

other treatments.

Comments

The difference between crossover designs from other designs is that measurements
on different treatments are obtained from each unit. Each experimental unit is administered
each treatment in a predetermined sequence. There are many possible crossover designs,
but each design depends on the number of treatments and the number of periods and
sequence chosen. Thus, there are also many models involving those effects. Therefore, the

model and ANOVA table can not be written in general form.

In this writing project, the purpose is to analyze the basic crossover designs using
SAS. Several examples were used to develop a better understanding. All three examples
showed the important methods for analyzing crossover designs including SAS code and
output. However, there are other crossover designs which are not discussed in this
project. In addition, the real experimental method may be more complicated than these
examples. On the other hand, the methods discussed in this project could be a foundation

of analysis of these more complicated crossover designs.
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APPENDIX I
SAS CODE:

dm 'log;clear;out;clear;';
data Grizzle;
infile 'Grizzle.dat';
input seq $ per ¢ treat & rep $ unit $ resp;
proc glm;
class seq unit per treat ;
model resp = seq unit treat per/ssl;
test h=seq e=unit;
proc glm;
class seq unit per treat ;
model resp = seq unit treat per/ss3;
run;

SAS OUTPUT:
General Linear Models Procedure

Dependent Variable: RESP

Sum of Mean

Source DF Squares Square

Model 15 27.9658333 1.8643889

Error 12 14.9441667 1.2453472
Corrected Total 27 42.9100000

R-Square C.V. Root MSE

0.651732 -2231.903 1.11595

Source DF Type I SS Mean Square

SEQ 1 4.5733333 4.5733333

UNIT 12 12.0066667 1.0005556

TREAT 1 5.1428571 5.1428571

PER 1 6.2429762 6.2429762

F Value
1.50

F Value

3.67
0.80
4.13
5.01

Tests of Hypothesesg using the Type I MS for UNIT as an error term

Source DF
SEQ 1
Source DF
SEQ 0
UNIT 12
TREAT 1
PER 1

Type I SS
4.57333333

Type III SS

0.0000000
12.0066667
3.5629762
6.2429762

Mean Square

4.57333333

Mean Square

1.0005556
3.5629762
6.2429762

F Value

4.57

F Value

0.80
2.86
5.01

Pr > F
0.2435

RESP Mean
-0.05000

Pr > F
0.0794
0.6446

0.0649
0.0449

Pr > F
0.0538
Pr > F

0.6446
0.1165
0.0249



APPENDIX II
SAS CODE:

dm 'log;clear;out;clear;';
data exam2;
infile 'exam2.test';
input seq $ per ¢ treat $ rep § resp unit $ carry;
p1l=0;p2=0;
if treat = 'A' then pl=1;
if treat = 'B' then p2=1;
proc glm;
class per treat unit;
model resp = unit treat per carry;
contrast 'treat' treat 1 ~-1;
contrast 'carryover! carry .5;
contrast 'peroid' per 1 -1 0,per 1 0 -1;
estimate 'A vs B' treat 1 -1;
estimate 'caA vs caB' carry 1 -1;
run;
proc sort;
by unit;
proc means data=exam2 noprint;
by unit;
var resp pl p2;
output out=results mean= mresp mpl mp2 ;
proc print data=results;
proc glm data = results;
model mresp=mpl mp2;
estimate 'A vs B' mpl 1 mp2 -1;
run;



SAS OUTPUT:

General Linear Models Procedure

Dependent Variable: RESP

Sum of Mean

Source _ DF Squares Square
Model 18 213.611113 11.867284
Error 26 24.426665 0.939487
Corrected Total 44 238.037778

R-Square C.v. Root MSE

0.897383 3.873642 0.96927
Dependent Variable: RESP
Source DF Type I SS Mean Square
UNIT 14 178.491111 12.749365
TREAT 1 7.453444 7.453444
PER 2 22.885002 11.442501
CARRY 1 4.781556 4.781556
Source DF Type III SS Mean Square
UNIT 14 158.510654 11.322190
TREAT 1 12.368552 12.368552
PER 2 22.139042 11.069521
CARRY 1 4.781556 4.781556
Contrast DF Contrast SS Mean Square
treat 1 12.3685516 12.3685516
carryover 1 4.7815555 4.7815555
peroid 2 22.1390424 11.0695212

T for HO:  Pr > |T|

Parameter Estimate Parameter=0
Avs B -1.18891408 -3.63
caA vs caB 0.42679078 2.26 0.0327

0.0012

F Value Pr > F
12.63 0.0001
RESP Mean
25.0222
F Value Pr > F
13.57 0.0001
7.93 0.0091
12.18 0.0002
5.09 0.0327
F Value Pr > F
12.05 0.0001
13.17 0.0012
11.78 0.0002
5.09 0.0327
F Value Pr > F
13.17 0.0012
5.09 0.0327
11.78 0.0002
Std Error of
Estimate
0.32766983

0.18918027



OBS
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N
UbdWNREO

Dependent
Source
Model
Error

Corrected

Source

MP1

MP2
Source
MP1

Mp2
Parameter
Avs B

Dependent

Parameter

INTERCEPT
MP1
MP2

UNIT TYPE _FREQ MRESP MP1 MP2
1 0 3 25.7333 0.66667 0.33333
10 0 3 26.1000 0.33333 0.66667
11 0 3 21.0333 0.66667 0.33333
12 0 3 25.6667 0.66667 0.33333
13 0 3 23.3667 0.66667 0.33333
14 0 3 25.6000 0.66667 0.33333
15 0 3 22.3333 0.66667 0.33333
2 0 3 22.6333 0.66667 0.33333
3 0 3 26.2333 0.66667 0.33333
4 0 3 27.9000 0.33333 0.66667
5 0 3 23.1000 0.33333 0.66667
6 0 3 27.5333 0.33333 0.66667
7 0 3 26.7667 0.33333 0.66667
8 0 3 24.7000 0.33333 0.66667
9 0 3 26.6333 0.33333 0.66667
General Linear Models Procedure
Variable: MRESP
Sum of Mean
DF Squares Square F Value Pr > F
1 15.3810847 15.3810847 4.53 0.0529
13 44.1159524 3.3935348
Total 14 59.4970370
R-Square C.V. Root MSE MRESP Mean
0.258518 7.362076 1.84215 25.0222
DF Type I SS Mean Square F Value Pr > F
1 15.3810847 15.3810847 4.53 0.0529
0 0.0000000 .
DF Type III SS Mean Square F Value Pr > F
0 0 .
0 0 .
T for HO:  Pr > |T| Std Error of
Estimate Parameter=0 Estimate
-6.08928571 -2.13 0.0529 2.86021727
Variable: MRESP
T for HO:  Pr > |T| Std Error of
Estimate Parameter=0 Estimate
28.13452381 B 18.30 0.0001 1.53732059
-6.08928571 B

0.00000000 B

-2.13

0.0529

2.86021727



SAS CODE:

dm 'log;clear;out;clear;';

data exam3;

1nf11e 'exam3 dat';
input Seq $ per $ treat $ rep $ resp unit $ ca cb cc;

proc glm;

class per treat unit;

APPENDIX III

-l,ca 1 cc -1;
,per -1 .5 .5 ca .3333333 cb .3333333 cc

model resp = unit treat per ca cb cc;
contrast 'treat' treat 1 -1 O0,treat 1 0 -1;
contrast ’carryover' cal cb
contrast 'period' per 0 1 -1
estimate 'A-B' treat 1 -1 0;
estimate 'A-C' treat 1 0 1;
estimate 'B-C' treat 0 1 -1;
estimate 'ca-cb' ca 1 cb -1;
estimate 'ca-cc' ca 1 cc -1;
estimate 'cb-cc' b 1 cc -1;
run;
proc sort;
by unit;

proc means data=exam3 noprint;

by unit;

var resp ca cb cc;
output out=results mean= mresp mca mcb mec;
proc glm data = results;
model mresp=mca mcb mcc;
'carry' mca 1 mcb -1 mcc 0,mca 1 mcb 0 mee -1;
'ca-cb' mca 1 mch -1;

'ca-cc' mca 1 mec l

contrast

estimate

estimate

estimate
run;

'cb-ce!

mch 1 mce -1;

.3333333;



Linear Models Procedure

Mean
Square

20.049615
1.002826

Root MSE
1.00141

Mean Square

10.313354
174.986204
53.322593
0.097963
4.351250

Mean Square

10.327185
124.863181
15.125000

Mean Square

124.863181
2.224606
53.322591

T for HO:  Pr > |T|

SAS OUTPUT:
General
Dependent Variable: RESP
Sum of

Source DF Squares
Model 41 822.034213
Error 66 66.186528
Corrected Total 107 888.220741

R-Square C.V.

0.925484 4.097307
Source DF Type I SS
UNIT 35 360.967407
TREAT 2 349.972407
PER 2 106.645185
CA 1 0.097963
CB 1 4.351250
cc 0 0.000000
Source DF Type III SS
UNIT 35 361.451472
TREAT 2 249.726361
PER 1 15.125000
CA 0 0.000000
CB 0 0.000000
cc 0 0.000000
Contrast DF Contrast SS
treat 2 249.726361
carryover 2 4.449213
period 2 106.645181
Parameter Estimate
A-B 0.82847222
A-C -3.12013889
B-C -3.94861111
ca-cb -0.27291667
ca-cc - 0.46458333
cb-cc 0.73750000

Parameter=0

3.14 0.0025
-11.82 0.0001
-14.96 0.0001

-0.77 0.4436

1.31 0.1940

2.08 0.0411

F Value Pr > F
19.99 0.0001
RESP Mean
24.4407
F Value Pr > F
10.28 0.0001
174.49 0.0001
53.17 0.0001
0.10 0.7556
4.34 0.0411
F Value Pr > F
10.30 0.0001
124 .51 0.0001
15.08 0.0002
F Value Pr > F
124.51 0.0001
2.22 0.1168
53.17 0.0001
Std Error of
Estimate
0.26389526
0.26389526
0.26389526
0.35405264
0.35405264
0.35405264



Dependent Variable: MRESP

Mean
Square

0.03077160
3.64427048

Root MSE
1.90900
Mean Square
0.03705247

0.02449074

Mean Square

Mean Square

0.03077160

Parameter=0

-0.13 0.8987
-0.05 0.9633
0.08 0.9352

T for HO:  Pr > |T|

Sum of
Source DF Squares
Model 2 0.06154321
Error 33 120.26092593
Corrected Total 35 120.32246914
R-Square C.V.
0.000511 7.810718
Source DF Type I SS
MCA 1 0.03705247
MCB 1 0.02449074
MCC 0 0.00000000
Source DF Type III SS
MCA 0 0
MCB 0 0
MCC 0 0
Contrast DF Contrast Ss
carry 2 0.06154321
Parameter Estimate
ca-cb -0.30000000
ca-cc ~0.10833333
cb-cc 0.19166667
Parameter Estimate
INTERCEPT 24 .42222222 B
MCA -0.10833333 B
MCB 0.19166667 B
MCC 0.00000000 B

Parameter=0

25.59 0.0001
-0.05 0.9633
0.08 0.9352

F Value Pr > F

0.01 0.9916

MRESP Mean

24 .4407

F Value Pr > F

0.01 0.9203

0.01 0.9352

F Value Pr > F

F Value Pr > F

0.01 0.9916

Estimate

2.33803459
2.33803459
2.33803459

Std Error of
Estimate

0.95449862
2.33803459
2.33803459



