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Abstract

An analysis will be proposed for a repeated measures study involving comparisons
of bacterial attachment rates over time on several different surfaces which are
similar to materials used in catheters and shunts. The analysis involves a mixed
model using random nested effects and a spatial covariance structure. Model
selection techniques will be discussed including model selection criterion, covariance
structure selection, and term selection. The SAS code from the MIXED procedure
will also be presented and discussed in the context of this analysis. The results of
the analysis indicate statistically significant differences of bacterial attachment rates
on the different surfaces at several time periods in the study. A discussion of the
results-including a discussion of of statistical versus practical significance-will be
presented along with recommendations and comments on future studies of this type.

Study Design

Introduction

Knowledge of the bacterial attachment rate to surfaces which are inserted into the
body is important because of the possibility of blood stream infection. When a
foreign surface is inserted into the blood stream, bacteria from both the surface and
within the body will begin to attach to the surface. When bacteria adhere faster,
the chance of a blood stream infection increases. The data and design presented in
this paper is from a thesis study performed at the Montana State University Center
for Biofilm Engineering by Jennifer Thompson. This study focuses on the
attachment rate of Pseudomonas aeruginosa to polystyrene. The surfaces of the
polystyrene were the primary interest of the study. Four different types of surfaces
of polystyrene were prepared using an oxygen texturing process and a conditioning
process. The oxygen texturing introduced oxygen molecules onto the polystyrene
which created a different surface. The polystyrene which underwent the oxygenation
will be referred to as ”textured” surfaces. Calling the oxygenated surface textured is
a sort of a misnomer, since the actual topological surface is smoother than the
non-oxygenated or "non-textured” surface. The conditioned surfaces were
polystyrene which had a coating of bovine serum albumin. This process creates a
surface with a growth medium for the bacteria which is meant to emulate the
environment of the body.

With these two techniques, four combinations of surface types could be created.
1. Non-Textured, Non-conditioned

2. Textured, Non-conditioned
3. Non-Textured, Conditioned

4. Textured, Conditioned

The four combinations will be referred to as treatments one through four for the
remainder of this paper.
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Figure 1: Flow Cell

Methods

The study was conducted on ten days spanning approximately one and a half years.
There were three replications of treatments one and two, and two replications for
both treatments three and four. The duration of a single replication was 360
minutes. Counts were taken at five minute intervals until 160 minutes, then 10
minute intervals until 240 minutes, and 15 minute intervals until completion. The
order of the replications was not randomized. All replications of treatment one were
run first, then all replications of treatment two, three and four.

The experiment took place in a flow cell, similar to Figure 1 [3], where a
constant flow of bacteria crosses over the polystyrene plate. The cell is a closed
system, where the counts are done from pictures taken through a microscope which
focuses on the plate through the glass coverslip. The microscope is on a mobile cart
which was shared by several experimenters. When the cart was not returned to the
flow cell in time for an observation to be recorded, missing data appeared in the
data set.
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Bacterial Attatchment vs. Time
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Figure 2: Raw Data [6]

Statistical Analysis

The model in this analysis was fit using Statistical Analysis Software. SAS is the
most widely accepted software for statistical analysis in the United States by both
government and industry. The MIXED procedure in SAS was used extensively.
MIXED allows the researcher to fit both fixed, random, and mixed models with
various error structures. The graphics procedure GPLOT was also used for model
diagnostics and general plotting of the data.

Because of the design and basic nature of this kind of experiment, some special
consideration had to be given to certain specific problems. These problems and how

they were addressed in this particular analysis will be discussed in the following
sections.

Complications and Considerations
The data from this study exhibited the following:

1. Non-Constant Variance

Unequally Spaced Time Series
Non-Independent Measurements

Missing Data

Day of the Count Represents a Random Effect

Day effects are Nested within Treatments

re N SR S

No Randomization of Treatment Replications
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Bacterial Attatchment vs. Time--Log Scale
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Figure 3: Log Scale

Initial Examination of Data

Figure 2 is a plot of the data from six days of the study. Note how the data is tightly
grouped at the beginning times and then starts to separate in later time periods. By
fitting a naive model, that is, a model with all factors of interest and simple
covariance structure ', a spread-location plot was constructed. The plot indicated
problems with the homogeneity of variance assumption. Several transformations
were considered, and a log transformation on both the response and time was
selected. Figure 3 is a plot of the data on the dual log scale. Note how there
appears to be less spread over time. A second spread location plot indicated that
the homogeneity of variance assumption has been met with this transformation.

Selection Criteria

For the bacterial attachment model, both the covariance structure and the terms for
the model must be selected. Although the covariance structure is not of direct
interest, choosing the appropriate structure will make the inferences from the data
more reliable.

The Corrected Akaike’s Information Criterion , C AIC was selected over all
competitors for a selection criterion. The two other major competitors were
Akaike’s Information Criterion, AIC, and the Bayesian Information Criterion, BIC
or SBC. The CAIC, AIC and the BIC are all based on the log — likelihood
function. The log-likelihood function is a measure of goodness-of-fit of the model.

'The simple covariance structure has the form o2I where I is the identity matrix of the
appropriate dimensions.
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[7] However, the log-likelihood will improve with each predictor variable or term
added to the model. The AIC, CAIC, and BIC add penalization factors to the
log-likelihood based on the number of predictors in the model which helps the
researcher choose a more parsimonious model.

The AIC is a widely recognized model building tool in many fields, but it will
tend to overestimate the size of the model. The BIC and CAIC have a smaller
probability of overparameterization than the AIC {8]. However, the BIC is used
under the assumption that one of the possible models being fit is the ”true” model
[5]. In contrast, the AIC and C AIC work under the assumption that the "true”
model is not one of the models being fit, and the best alternative is being found.
Being more comfortable with the second assumption, the CAIC was chosen as the
model building criterion. In some parameterizations of the CAIC the minimum
value is optimal. However, the algorithm which SAS uses in the information
criterion section of the mixed procedure produces both a maximum and a minimum
parameterization. For the covariance and term selection discussion, the
maximization of the CAIC will be desired. Along with the criterion, residual
diagnostics will also be used te determine the "best” model.

Error Structure

Because of the time series structure of the bacteria counts, independence between
observations could not be assumed. Also, the unequally spaced time intervals posed
a problem for modeling the error structure. In addition, the error structure had to
account for the fact that there were multiple measurements on the same treatment.
This type data structure is called a repeated measures design.

When examining biological growth data, it is common to collect more data. at
the beginning time periods when the growth is more variable and less data in the
latter time periods when the growth is expected to have less noise. [2]A special error
structure was built into the model to take into account the dependence of one
observation on the previous observations and the unequal spacing. The error
structure used is called a spatial power law structure. The spatial power structure
allows the researcher to fit a model where the correlation between observation
decays depending on the distance bétween two observations in time (Figure 4).

By using this structure, the correlation between observations could be
estimated. Note that this is a generalization of the one dimensional AR(1)
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structure[4]. The structure was fit specifically to match the repeated properties of
the data.

The process for selecting the spatial power covariance structure began with
building a "full” model. The full model included all terms of possible interest.
Several covariance structures, including spherical, compound symmetric, and
gaussian, were then analyzed in the full model. The spatial power structure yielded
the highest CAIC value and also had the best residual diagnostics.

Model Selection and Diagnestics

The model fitting was also based on maximizing the CAIC. The models with the
highest C AIC values were then analyzed by checking the residual diagnostics to
assure the underlying distributional assumptions had been met {residual versus
predicted values and spread location plots). The largest model was fit with linear,
quadratic, and cubic centered log-time terms, treatment effects, and interaction
effects of the treatments with the different time terms. Other models were fit by
removing one term at a time until all time terms were removed. The residual
diagnostics were then checked for the models with the best CAIC’s. The model
with the highest CAIC, 412.6, and best residual diagnostics was selected and is
explained in the next section. Note that one of the most important effects in this
study is the interaction of treatment and time. By specifying this effect in the
model statement, MIXED will allow different slopes to be fit for the different
treatments. This is important because the primary goal of the study was to find
differences in the attachment rate due to treatments. Even if the interaction is not
significant, noise in the data may be masking the interaction. One should still check
for differences at the important times during the study using the LSMEANS option
in the MIXED procedure.

Now that the final model has been selected, the last of the complications and
considerations can be discussed. Because the treatments were run in a
non-randomized order, the inferences from the tests at the given time periods may
not be valid. However, by looking at the residuals versus factor plots (figures 4 and
5), an observer can see that the variability did not change over the treatments or
over the days on which the experiment was conducted. This indicates that the
non-randomization may not discount the inferences on the treatment effects.

Model
Yijk = Ti +Vi(i) + Bitii + €ijk + Orj)
where
e ; = treatment level
¢ j = day which experiment was run

¢ k = minutes elapsed during the experiment
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Figure 5: Residual vs Treatment Level

Residual Piot Across Days

Days

Figure 6: Residual vs Run Order
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® y;jx is the log count value at the i** treatment on the j** day taken at time k
e 7; is the effect of the ¢** treatment

o [itir is the fixed interaction effect of centered log(time) and the treatment
which was run. This allows for different slopes for different levels of the
treatment.

® 1;;; is the time k on the j** day of the i**

® ;i) is the effect of the j* day within the i* treatment, considered random
because this specific day was not of interest. Consider the day randomly
selected from all possible days on which the process could have been run.
v~ N(0,02

® ¢&;jxis the random error term for the model, which is assumed to be N 0,02);
however, in this model a serial dependence of the error at time ¢ on the error
at time ¢ — 1 was found. Therefore, the model was fit with a spatial power
covariance structure.

Ox(ij) is the model term that accounts for special error structure.

Specific Code for Example

PROC MIXED data=growth method=reml ic;
CLASS trt day ptime;
MODEL response = cstime cstime*trt / noint p;
LSMEANS trt / (cstime) = (-.4986); * 60 minutes;
LSMEANS trt / (cstime) = (~.0688); * 90 minutes;
LSMEANS frt / (cstime) = (.23616); * 120 minutes;
LSMEANS frt / (cstime) = (.66596); * 180 minutes:
LSMEANS trt / (cstime) = (.97091); * 240 minutes;
MAKE ’predicted’ OUT = predi;
REPEATED ptime / type=sp(pow)(time) subject=day(trt) r rcorr;

Tricks, Tips, and Suggestions for the Code

Note that time appears in three forms: tume , cstime , and ptime. time is the original
time variable which represents the distance in time that the data was collected. By
placing this variable in the specified covariance structure, SAS is able to model the
spatial power structure using the correct distances in time. cstime represents the
centered and scaled time used for modeling and model building. ptime is the same
as cstime , but it appears in the class statement so that SAS recognizes it in the
REPEATED statement. By placing cstime in the REPEATED statement, PROC
MIXED can align the observations according to the cstime regardless of the missing
values. This is extremely important and what separates the MIXED procedure from
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the GLM procedure. When analyzing repeated measures in GLM with missing data,
GLM will drop all runs which have missing data and only analyze those with all the
data present. Another disadvantage of using GLM is that it cannot properly handle
either the unequally spaced data or the more complex covariance structures.

The subject option in the REPEATED statement specifies the variable on
which the covariance matrix is structured. By specifying the subject in this example
the covariance matrix is constructed to be a block diagonal matrix with the
diagonal elements fitting the spatial power structure to the individual runs of the
experiment. The r and rcorr options instruct MIXED to print out the first block of
the covariance matrix and the correlation matrix which represents the first run of
the experiment.

The MAKE statement creates SAS data sets for output of residuals, predicted
values, etc., for use in diagnostics and model fitting. The LSMEANS statement is
used to compare the growth curves at different times. Notice that the times are
centered and scaled to match cstime . A suggestion for finding the centered and
scaled times for the LSMEANS statement is to inspect the libraries using the library
icon on the tool bar in SAS and look in the data set where the centered and scaled
values are stored by the STANDARDIZE procedure. If you outputted the data from
the STANDARDIZE procedure into a data set with the same name as the original
data set created in the DATA step, the original time and the corresponding centered
and scaled times are easy to find. The LSMEANS statement was chosen over the
CONTRAST statement because of the missing values in the data set.

Results

The primary goal of the study was to determine if the treatments had a significant
effect on bacterial growth.

For the primary goal, hypothesis tests were constructed to test for both a
significant effect due to the treatments and to find specific differences between
bacteria growth due to the different treatments. These tests for differences were
conducted at 90, 120, 180, and 240 minutes. The test which tests the overall
significance of the treatment effects indicates that treatment effects do exist (Reject
H, : 7; = 0, P-value<.0001). The hypothesis test was also conducted to verify that
the treatments had different interactions with time which indicates that the
attachment rate differs for the different treatments(Reject H, : Bitizr = 0,
P-value<.0001).

A family of thirty individual tests for treatment differences were run at the
5%level. Individual tests were run at the 0.17% using the Bonferroni Inequality.
These tests indicated that the non-textured non-conditioned runs differed
significantly from the textured conditioned runs at all levels of time. Also, the
non-textured conditioned runs differed significantly from the textured conditioned
runs at all times. These and other differences are listed on the attached table
highlighted in red. A point of interest is that the textured non-conditioned runs
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Results
Compared Pratne Compared Potue
Groups Groups
At 90 minutes ki A1 120 minutes
'1t0.2 0.0425 ] 1102 0.0204.
1103 0.6317 ] 1t03 0.4711
104 0.0001 1to4 0.0001
{2103 0.1811 210 3 0.1782
204 0.0185 2t04 0.01.38
3104 0.0003 3t04 0.0002
At 180 minutes i At 240 minutes
1to2 0.0083 1to02 0.0049
1103 0.3118 1103 0.2365
1t04 0.0001 104 0.0001
2103 0.1811 2103 0.1866
2to4 0.0104 2t04 0.0093
3to4 0.0001 3104 0.0001

Red is a significant difference, while blue shows a suggestive difference.

Figure 7: Results [6]

were never detected to be significantly different from the non-textured conditioned
runs. Notice where differences were not detected does not mean that differences do
not exist. This could be due to an insufficient amount of data or to extreme noise in
the data.

Suggestions for Future Study

There are two suggestions for future study of similar repeated measures data. The
first suggestion is a concerns the data collection. When the experiment was
conducted, the microscope was not maintained in the same position on the plate.
Because the microscope was shared during the experiment, each measurement was
taken from a different area on the plate. There is a spatial aspect to the data which
has been ignored in this analysis and may be of importance.

The second suggestion deals with the analysis style. Instead of using a multiple
comparison style test, the analysis could have been performed using break points
and comparing the slopes of the different treatments. If significant differences were
found in the slopes, conclusions could have been made at all time periods, instead of
at certain time periods. This type of procedure would require the researcher to have
prior knowledge of the behavior of the bacterial attachment to set the break points
prior to the data collection. ‘
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