2.12 Tests for Homogeneity of Variance

e In an ANOVA, one assumption is the homogeneity of variance (HOV) assumption. That is, in
an ANOVA we assume that treatment variances are equal:

L2 2 _ 2
Hy:0{=05="=0,.

Moderate deviations from the assumption of equal variances do not seriously affect the results in the
ANOVA. Therefore, the ANOVA is robust to small deviations from the HOV assumption. We only
need to be concerned about large deviations from the HOV assumption.

Evidence of a large heterogeneity of variance problem is easy to detect in residual plots. Residual
plots also provide information about patterns among the variance.

e Some researchers like to perform a hypothesis test to validate the HOV assumption. We will consider
three common HOV tests: Bartlett’s Test, Levene’s Test, and the Brown-Forsythe Test.

These tests are not powerful for detecting small or moderate differences in variances. This is okay
because we are only concerned about large deviations from the HOV assumption.

2.12.1 Bartlett’s Test

e To perform Bartlett’s Test:

1
1. Calculate U = ol Vln(sf,) - Zal/iln(.s?) where
i=1

a 2 a a
T e L
sp—%, vi=mn; — 1, V—;yz, C—1+?>(CLZL)<ZZ:Z/¢_V .

Note: for a oneway ANOVA, 512, =MSFE and v =N —a.
2. Reject Hy: 0} =02 =---=02 if U>x*(a,a—1).

e Bartlett’s Test is the uniformly most powerful (UMP) test for the homogeneity of variances problem
under the assumption that each treatment population is normally distributed.

e Bartlett’s Test has serious weaknesses if the normality assumption is not met.

— The test’s reliability is sensitive (not robust) to non-normality.

— If the treatment populations are not approximately normal, the true significance level can be
very different from the nominal significance level (say, o = .05). This difference depends on the
kurtosis (4th moment) of the distribution.

*x The true significance level will be smaller than the nominal level for a distribution with
negative kurtosis (such as a uniform distribution).

* The true significance level will be larger than the nominal level for a distribution with
positive kurtosis (such as a double exponential distribution).

e Because of these problems, many statisticians do not recommend its use. They recommend Levene’s
Test (or the Brown-Forsythe Test) because these tests are not very sensitive to departures from
normality.
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2.12.2 Levene’s Test
e To perform Levene’s Test:

1. Calculate each z;; = |yij — ;..
2. Run an ANOVA on the set of z;; values.

3. If p-value < a, reject H, and conclude the variances are not all equal.

e Levene’s Test is robust because the true significance level is very close to the nominal significance
level for a large variety of distributions.

e It is not sensitive to symmetric heavy-tailed distributions (such as the double exponential and stu-
dent’s t distributions).
2.12.3 Brown-Forsythe Test
e To perform the Brown-Forsythe Test:

1. Calculate each z;; = |y;; — yi| where ¥; is the median for the ith treatment.
2. Run an ANOVA on the set of z;’s.

3. If p-value < a, reject H, and conclude the variances are not all equal.
e The Brown-Forsythe Test is relatively insensitive to departures from normality.
e It is not sensitive to skewed distributions (e.g., x?) and extremely heavy-tailed distributions (e.g.,
Cauchy). In these cases, it is more robust than Levene’s Test.
2.12.4 Example of Bartlett’s, Levene’s, and Brown-Forsythe Tests

A textile company has five looms that weave cloth. The company is concerned that there may be significant
variability in the strengths of the cloth produces by the looms. Five random samples of cloth are taken
from the cloth produced by each loom. Each sample is tested and the strength is recorded. The data are:

Loom
1 2 3 4 5
14.0 13.9 14.1 13.6 13.8
14.1 13.8 14.2 13.8 13.6
14.2 13.9 14.1 14.0 13.9
14.0 14.0 14.0 13.9 13.8
14.1 14.0 13.9 13.7 14.0
SAS Output for HOV Tests
The GLM Procedure
cloth
Level of
loom N Mean Std Dev
1 5(14.0800000 | 0.08366600
2 51 13.9200000 | 0.08366600
3 5(14.0600000 |0.11401754
4 5113.8000000 |0.15811388
5 51 13.8200000 | 0.14832397
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The GLM Procedure

Dependent Variable: cloth

Sum of
Source DF | Squares | Mean Square | F Value | Pr > F
Model 410.34160000 0.08540000 5.77 1 0.0030
Error 20 | 0.29600000 0.01480000
Corrected Total | 24 | 0.63760000

R-Square | Coeff Var | Root MSE | cloth Mean
0.535759 0.872957 0.121655 13.93600

Source | DF | Type III SS | Mean Square | F Value | Pr >F

loom 41 0.34160000 0.08540000 5.77 1 0.0030

The GLM Procedure

Bartlett's Test for Homogeneity of
cloth Variance

Source | DF | Chi-Square | Pr > ChiSq

loom 4 2.5689 0.6323

The GLM Procedure

Levene's Test for Homogeneity of cloth Variance
ANOVA of Absolute Deviations from Group Means

Sum of Mean
Source DF | Squares | Square | F Value| Pr>F
loom 4 0.0122 | 0.00304 0.67 0.6179
Error 20 0.0902 | 0.00451
The GLM Procedure

Brown and Forsythe's Test for Homogeneity of cloth Variance
ANOVA of Absolute Deviations from Group Medians

Sum of Mean
Source DF | Squares Square F Value Pr>F
loom 4 0.0136 0.00340 0.57 0.6897
Error 20 0.1200 0.00600

e From the following analysis in SAS, the p-values for Bartlett’s Test, Levene’s Test, and the Brown-
Forsythe are .6323, .6179, and .6897, respectively.

e Therefore, we would fail to reject Hy : 02 = 05 = 03 = 05 = 02. Therefore, the HOV assumptions
is reasonably met for the oneway ANOVA.

e And, assuming there are no serious violations of any other assumptions, we would reject
Hy: for the oneway ANOVA.
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SAS Code for HOV Tests
DM °LOG; CLEAR; OUT; CLEAR;’;

0DS GRAPHICS ON;
ODS PRINTER PDF file=’C:\COURSES\ST541\HOVTEST.PDF’;
OPTIONS NODATE NONUMBER;

sk sk sk sk ok ok ok ok o ok ok ok sk sk sk sk sk ok sk ok sk ok sk sk sk sk sk sk sk ok ok sk ok sk sk sk sk sk sk sk sk kR koK
*x*x 5 Looms, Response = Cloth Output, n=5 *x*x;

**x Bartlett’s, Brown-Forsythe, Levene’s Tests *x*x*;
stk sk ok sk ook ok okok sk ok ko ok sk sk sk okok ok skosk sk sk sk ok sk sk sk ok sk ok ok sk sk sk ko sk sk sk sk ok kokok ok

DATA in; INPUT loom cloth @@; CARDS;

114.0114.1114.2 1 14.01 14.1
2 13.9 2 13.8213.9214.02 14.0
314.1 3 14.2 3 14.1 3 14.0 3 13.9
4 13.6 4 13.8 4 14.0 4 13.9 4 13.7
5 13.8 56 13.6 5 13.9 5 13.8 56 14.0

PROC GLM DATA=in;
CLASS loom;
MODEL cloth = loom / ss3 ;
MEANS loom / HOVTEST=BARTLETT;
MEANS loom / HOVTEST=BF;
MEANS loom / HOVTEST=LEVENE(TYPE=ABS) ;

0ODS GRAPHICS OFF;
RUN;

2.12.5 Data Analysis Options When the HOV Assumption is Not Valid

e If we reject Hy : 02 = 03 = --- = 02, then what options do we have to analyze the data? We will

consider the following two options:

1. Weighted least squares.

2. Using a variance stabilizing transformation.
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2.13 Weighted Least Squares

e Linear regression models (such as the models used in this course) that have a non-constant variance
structure (heterogeneity of variance) can be fitted by the weighted least squares (WLS) method.

e With the WLS method, the squared deviation between the observed data value and the predicted
value (y; — ;)2 is multiplied by a weight w;. This weight is inversely proportional to the variance of

Yi-

e For simple linear regression, the WLS function is W (S, 81) =

To find the least squares normal equations, simultaneously solve OW /98y = 0 and W /9p; = 0.

The WLS normal equations are:

n n n
E wiyi = Po E w; + b1 g w;iT;
—1 i1 i=1
n n n
N N )
§ wiziy; = Po E wiz; + B E WiT;
Py i1 i=1

The solution 30 and 31 to these equations are the WLS solutions.

e In some cases, the weights are known. For example, if an observed y; is actually the mean on n;
observations and assuming the original observations comprising the mean have constant variance o2,

then the variance of y; is 0 /n; making the weights w; = n;.

e For a one factor CRD, the WLS function is

Wi, m,...,7a) =

To find the least squares normal equations, you simultaneously solve
OW/Ou=0 and OW/0r; =0 for i=1,2,...,a.

After algebraic manipulation, this yields the following WLS normal equations:

a ng a ng a n;
§ § WijYi; = M E E wij + E Ti E Wij
i=1 j=1

i=1 j=1 i=1 j=1
E WijlYi; = M E Wi + T4 E Wi fori=1,2,...,a
7=1 7j=1 7j=1

The solution to these (a + 1) equations subject to one constraint (such as > ;. ; 7; = 0) are the WLS
solutions.

e However, because the variance o2 of yi; is typically unknown, we need to estimate the weight 1/ UZ~2
from the data.

e For the one-factor CRD, we know the sample variance sf for treatment ¢ is an unbiased estimate of
0? (E(s?) = 0?). The estimated weight is @;; = 1/s?.

e SAS and Minitab will perform a WLS analysis. You just have to supply the weights.
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2.13.1 Weighted Least Squares (WLS) Example

EXAMPLE: A company wants to test the effectiveness of a new chemical disinfectant. Six dosage levels
were considered (1 through 5 grams per 100 ml). The experiment involved applying equal amounts of the

disinfectant at each level to a surface that was covered with a common bacteria. The results are given
below. The design was completely randomized.

Dose % Dose % Dose % Dose % Dose %
1 5 2 13 3 12 4 17 5 22
1 1 2 13 3 16 4 13 5 30
1 3 2 6 3 9 4 16 5 27
1 5 2 7 3 18 4 19 5 32
1 2 2 11 3 16 4 26 5 32
1 6 2 4 3 7 4 15 5 43
1 1 2 14 3 14 4 23 5 29
1 3 2 12 3 13 4 27 5 26

The sample variances s? are

W N
I
»
NN
I
W
ot
I

57 = 52 = s
Thus, the weights 1/s7 are

w1 = Wy = w3 = Wy = Wy =

SAS Output for WLS Example

SAMPLE VARIANCES AND WEIGHTS FOR EACH TREATMENT trt

Obs | trt| var y wgt

[u—y

3.6429 | 0.27451

14.2857 | 0.07000

13.8393 | 0.07226

>l W N

27.4286 | 0.03646

1
2
3
4
5

5138.1250 | 0.02623

Sum of
Source DF Squares | Mean Square | F Value | Pr > F

Model 41207.5551273 51.8887818 51.89 [ <.0001

Error 351 35.0000000 1.0000000

Corrected Total | 39 | 242.5551273

R-Square | Coeff Var | Root MSE | y Mean
0.855703 11.86288 1.000000 | 8.429653

Source | DF | Type IIT SS [ Mean Square | F Value | Pr > F

trt 41207.5551273 51.8887818 51.89 | <.0001
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Bonferroni (Dunn) t Tests for y

This test controls the Type I experimentwise error rate, but it generally has a higher Type II error rate than Tukey's for all pairwise

comparisons.
Alpha 0.05
Error Degrees of Freedom 35
Error Mean Square 1
Critical Value of t 2.99605

Comparisons significant at the 0.05 level are
indicated by ***.
Simultaneous
Difference 95%
trt Between Confidence
Comparison Means Limits
5-4 10.6250 2.0487 | 19.2013 | #**
5-3 17.0000 9.3642 | 24.6358 | ***
5-2 20.1250 | 12.4564 | 27.7936 | ***
5-1 26.8750 | 20.0292 | 33.7208 | ***
4-5 -10.6250 | -19.2013 | -2.0487 | ***
4-3 6.3750 [ -0.4297 | 13.1797
4-2 9.5000 2.6586 | 16.3414 | ***
4-1 16.2500 | 10.3455 | 22.1545 | ***
3-5 -17.0000 | -24.6358 | -9.3642 | ***
3-4 -6.3750 | -13.1797 0.4297
3-2 3.1250 | -2.4926 8.7426
3-1 9.8750 5.4460 [ 14.3040 | ***
2-5 -20.1250 | -27.7936 | -12.4564 | ***
2-4 -9.5000 | -16.3414 | -2.6586 | ***
2-3 -3.1250 | -8.7426 2.4926
2-1 6.7500 2.2649 [ 11.2351 | #**
1-5 -26.8750 | -33.7208 | -20.0292 | #**
1-4 -16.2500 | -22.1545 | -10.3455 | ***
1-3 -9.8750 | -14.3040 | -5.4460 | ***
1-2 -6.7500 | -11.2351 | -2.2649 | ***

DM °LOG; CLEAR; OUT; CLEAR;’;

0DS GRAPHICS ON;

0DS PRINTER PDF file=’C:\COURSES\ST541\WLS.PDF’;
OPTIONS NODATE NONUMBER;

DATA in; INPUT trt y @Q@; CARDS;

1 5 1 1 1 3 1 5 1 2 1 6 1 1 1 3
213 213 2 6 2 7 211 2 4 214 212
312 316 3 9 318 316 3 7 314 313
417 413 416 419 426 415 423 427
522 530 527 532 532 543 529 b5 26
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PROC
PROC

DATA

DROP

PROC

SORT DATA=in; BY trt; <-- Sort the data by treatments.
MEANS DATA=in noprint; BY trt; <-- Calculate and save sample
VAR y; <-- variances in ‘wset’.

OUTPUT OUT=wset VAR=var_y;

wset; SET wset; <-- Calculate the weights from
wgt = 1/var_y; <-- the sample variance in wset.
_FREQ_ _TYPE_;

PRINT DATA=wset;

TITLE ’SAMPLE VARIANCES AND WEIGHTS FOR EACH TREATMENT trt’;

DATA

PROC

in; MERGE in wset; BY trt; <-- Attach the weights by treatment.
GLM DATA=in;
WEIGHT wgt; <-- Include the WEIGHT statement.
CLASS trt;

MODEL y = trt / SS3;

MEANS trt / BON;

TITLE ’WEIGHTED LEAST SQUARES EXAMPLE WITH BONFERRONI MCP’;

RUN;

2.14 Variance Stabilizing Transformations

If the homogeneity of variance assumption is only moderately violated, the F-test results are slightly
affected when the design is balanced (equal n;’s). No transformation should be considered.

If the homogeneity of variance assumption is either (i) seriously violated or (ii) moderately violated
with very different n; sample sizes (serious imbalance), then the effects on the F-test are more serious.

— If the treatments having the larger variances have the smaller sample sizes, the true Type I error
is larger than the nominal level.
— If the treatments having the larger variances have the larger sample sizes, the true Type I error

is smaller than the nominal level.

A common approach to deal with nonconstant variance (heterogeneity of variance) is to apply a
variance-stabilizing transformation of the response that will equalize the variances across treat-
ments. We then perform the ANOVA on the transformed data.

Sometimes the variance of the response increases or decreases as the mean of the response increases.
If this is the case, the residuals vs predicted values plot would have a funnel shape. This is when a
variance stabilizing transformation may be appropriate.

The statistical problem is to use the data to determine the form of the required transformation.

Let p; be the mean for treatment ¢. Suppose the standard deviation of y;; is proportional to a
power of ;. That is, o; = Oug* for some o and 6. 6 is called the constant of proportionality.
Notationally, we write o; o< u*. The symbol oc means “is proportional to”.

The goal is to find a transformation y* = y* such that y* has constant or near constant variance
across all treatments.

This implies that after transforming each y;; to y;;, we no longer have a HOV problem when the
ANOVA is run with the y;; values.

It can be shown that the variance is constant if A = 1 — . We will discuss how to estimate o or .
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2.14.1 The Empirical Method

o If o; = Ou, then log(o;) = log(f) + alog(pi). A plot of log(o;) vs log(u;) is linear with slope equal
to a. Thus, a simple way to estimate o would be to

Calculate s; and 7;. for treatment ¢ =1,2,...,a.
Fit a regression line log(si) =
The least squares estimate of the slope @ is the estimate of a.

Transform each y;; to y;; = y;\J where A =1 — a.
Run the ANOVA on the y;; values.

AN

e Note that if o = 0, then o; = 0 for all i. Thus, the homogeneity of variance assumption is met
without a transformation.
2.14.2 The Box-Cox Procedure

e Another approach is the Box-Cox procedure which will estimate the value of A corresponding to
the transformation yi)‘j that maximizes the model R2.

e To find the Box-Cox transformation,

1. For a sequence of A values, calculate R?(\). R?()) is the model R? value from the ANOVA on
the transformed y) values.

2. Select the \ that maximizes R%(\) (which is equivalent to maximizing the likelihood function).
3. Run the ANOVA on the yl-’\j values.

e SAS can find the Box-Cox transformation using the TRANSREG procedure.

2.14.3 Transformation Example using the Empirical and Box-Cox Methods
EXAMPLE: We will use the same data used in the WLS example:

Dose % Dose % Dose % Dose % Dose %
1 5 2 13 3 12 4 17 5 22
1 1 2 13 3 16 4 13 5 30
1 3 2 6 3 9 4 16 5 27
1 5 2 3 18 4 19 5 32
1 2 2 11 3 16 4 26 5 32
1 6 2 4 3 7 4 15 5 43
1 1 2 14 3 14 4 23 5 29
1 3 2 12 3 13 4 27 5 26
e We will see that the recommended transformation is a square root (A = .5) transformation. The

following SAS output contains

— The empirical method results and the Box-Cox method results.

— The analysis of the original data. Note that the variability increases with the treatment levels
(from 1 to 5).

— The analysis of the transformed (square root) data. Note that the variability is now nearly
constant across the treatment levels (from 1 to 5).
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Fit Plot for logstd
EMPIRICAL SELECTION OF ALPHA ]
Obs | mean std | logstd | logmean 151
1| 3.250 | 1.90863 [ 0.64638 | 1.17865 E" )
2 [10.000 |3.77964 |1.32963 | 2.30259
3 (13.125 | 3.72012 | 1.31376 | 2.57452
4119.500 | 5.23723 | 1.65579 | 2.97041 ) . . . .
5]30.125 | 6.17454 | 1.82044 | 3.40536 ] e ’
[ Fit [ 95% Confidence Limits 95% Prediction Limits |
ANOVA TO FIND EMPIRICAL SELECTION OF ALPHA
The GLM Procedure
Variable: logstd
Sum of
Source DF Squares | Mean Square | F Value | Pr > F
Model 110.79599334 0.79599334 153.30 | 0.0011
Error 3 (0.01557765 0.00519255
Corrected Total 4 {0.81157099
R-Square | Coeff Var | Root MSE | logstd Mean
0.980806 5.325109 0.072059 1.353200
Source |DF [ Type III SS | Mean Square | F Value | Pr > F
logmean 1] 0.79599334 0.79599334 153.30 | 0.0011
Standard
Parameter Estimate Error |t Value | Pr > [t|
Intercept |0.0347067133 | 0.11126036 0.31| 0.7755
logmean 0.5303019549 | 0.04283106 12.38 | 0.0011
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Find the Box-Cox Transformation using PROC TRANSREG

The TRANSREG Procedure

Box-Cox Analysis for y

150

100

VR

—
P
50 - ' .
-
S P -
/ - _
— b1
0 ——— e ——
32 -50 7 Selected A = 0.5
£ 04 B
2
0 -150 —
S
-200 - T T T T
2 -1 0 1 2
Lambda
Terms with Pr F < 0.05 at the Selected Lambda
ttl —— — trt2 —— = - trt3 - trt4
sqrty
Level of Level of
trt N Mean Std Dev trt N Mean Std Dev
1 81 3.2500000 | 1.90862703 1 811.72499261 | 0.56000051
2 8110.0000000 | 3.77964473 2 813.10359092 | 0.64827099
3 8113.1250000 | 3.72011905 3 8 13.58746278 | 0.53995849
4 8119.5000000 |[5.23722937 4 814.38144283 | 0.58842037
5 8 130.1250000 [ 6.17454452 5 815.46489064 | 0.54507700
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ANOVA -- ORIGINAL DATA

The GLM Procedure
Variable: y
Sum of
Source DF Squares | Mean Square | F Value | Pr > F
Model 4 ( 3323.150000 830.787500 42.68 | <.0001
Error 35| 681.250000 19.464286
Corrected Total | 39 | 4004.400000
R-Square | Coeff Var | Root MSE | y Mean
0.829875 29.02523 4.411835 | 15.20000
Source | DF | Type III SS | Mean Square | F Value | Pr > F
trt 4 ( 3323.150000 830.787500 42.68 | <.0001
Dependent Variable: y
Fit Diagnostics for y
o 4 4 o 4 o
10
T 51 .o . g2 3 z 273
7 Nk g . ol 2 s § o o o 2 é
~ § ] ° Z ol & o0- § § g g ~ 0 g
54 Z o S o 8 o 3 8
° © o o ]
° o 2 e} 2 o
T T T T T T T T T
10 20 30 10 20 30 0125 0175  0.225
Predicted Value Predicted Value Leverage
40 0.25 -
30 - g 0.20 -
E /8 2 0.15
~ ° g O 0.10
10 o
8 g o 0.05 TJ j I
0 0.00 - i gall |
T T T T T T T T T T
2 1 0 1 2 0 10 20 30 40 0 10 20 30 40
Quantile Predicted Value Observation
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ANOVA -- SQUARE ROOT TRANSFORMATION

The GLM Procedure
Variable: sqrty
Sum of
Source DF Squares | Mean Square | F Value | Pr > F
Model 4162.69546580 15.67386645 46.96 | <.0001
Error 35| 11.68130939 0.33375170
Corrected Total | 39 | 74.37677520
R-Square | Coeff Var | Root MSE [ sqrty Mean
0.842944 15.81701 0.577712 3.652476
Source | DF | Type III SS | Mean Square | F Value | Pr > F
trt 4162.69546580 15.67386645 46.96 | <.0001
Dependent Variable: sqrty
Fit Diagnostics for sqrty
10 A o 2 o 2 o
o 8 ° 8 3
_ 05 <:>Z . 1 §Z . _ 1—§
3 ° o ° g ° o o 5 [}
2 00 >—o of B oo ° o gl 2 o-s
) o o ¢ o o v
~ o pt S ~ o o o &~
-0.5 ° o .14 Z o o 14 g
° ° o o ° o o
1.0 o ° 2 I 25
T T T T T T T T T T T
2 3 4 5 2 3 4 5 0125 0175  0.225
Predicted Value Predicted Value Leverage
© ° 0.12 H
1.0 A 6 -
4o 0.10
. 8
5 0.5 5 o/ o A 0.08
2 0.0 241 8 8 g % 0.06
& R o S o4
-0.5 - £ o /80 0.04
2 ° 0.02 T T j
-1.0 T 2 0.00 A 1A 113 T%T_
T T T T T T T T T T T T T T T T
2 1 0 1 2 1 2 3 4 5 6 0 10 20 30 40
Quantile Predicted Value Observation
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DM ’L0OG; CLEAR; OUT; CLEAR;’;

0DS GRAPHICS ON;
0DS PRINTER PDF file=’C:\COURSES\ST541\BOXCOX.PDF’;
OPTIONS NODATE NONUMBER;

K ok ok ok ok ok ok ok ke ok sk ok ok ok ok ok sk ok ok ko ok ok ok ok ok ok ok ok sk ok sk ok ok ok sk k sk ke kok sk ok ok |

*x*% Variance Stabilizing Transformations **x*;
stk ok stk sk ok skskok sk sk skok sk ok sksk sk ok stk sk ok skok sk sk ok skokok sk ok ok ok

DATA in; INPUT trt y @@; CARDS;

1 5 1 1 1 3 1 5 1 2 1 6 1 1 1 3
213 213 2 6 2 7 211 2 4 214 212
312 316 3 9 318 316 3 7 314 313
417 413 416 419 426 415 423 427
522 530 527 532 532 543 529 5 26

ook ook ok ok kok ok ok sk ok ok ok sk ok ok ok ok ok ok sk ok ok ok kok ok ok sk ok ok ok ok ok ok sk ok ok ok skok ok ok skok ok ok skok kok ok ok kkok ok

***% Find the transformation using the empirical method x**x*;
sk sk ke ok sk sk ok ok sk sk ok sk sk sk sk ok sk sk sk sk ok ok sk sk sk ke ok sk sk sk sk ok sk sk sk ok sk sk ok skskok ok sksk ok sk ok

PROC SORT DATA=in; BY trt;
PROC MEANS DATA=in NOPRINT; BY trt;

VAR y; OUTPUT OUT=yset MEAN=mean STD=std;
DATA yset; SET yset;

logstd =L0G(std); logmean=L0G (mean) ;
PROC PRINT DATA=yset;

VAR mean std logstd logmean;
TITLE ’EMPIRICAL SELECTION OF ALPHA’;

PROC GLM DATA=yset;
MODEL logstd=logmean / SS3 solution;
TITLE ’ANOVA TO FIND EMPIRICAL SELECTION OF ALPHA’;

*xx Use the output of the GLM procedure regressing the *xx;
*xx log standard deviations on the log means. Apply the *xx;
*xx Apply the transformation to the response and *okok
*%* rerun the analysis with the transformed response. *okok 5

K ok ok ok ok ok ok ok ok ok sk ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok sk ok ok ok ok ok ok ok ok ok ok ok ok sk ok sk ok ok ok ok ok k ok ok ok

**%* Find the transformation using the Box-Cox method **x*;
stk ok sk skok sk ok sksksk sk ok sk sk sk ok sksksk ok stk sk sk ok sk sk sk sk ok sksk sk ok sksksk sk ok skskok sk ook okok

PROC TRANSREG DATA=in;
MODEL BOXCOX(y / LAMBDA=-2 to 2 by .1) = CLASS(trt);
TITLE ’Find the Box-Cox Transformation using PROC TRANSREG’;

*xx Use the output of the TRANSREG procedure to find the *x*x;
*x*% the Box-Cox transformation. Apply the transformation **¥x;
*** to the response and rerun the analysis with the *okok
*x* transformed response *kok g

K3k oK ok o K KoK ok o KK oK ok ok o K oK ok ok o KoK oK ok o K KoK ok ok K KoK oK oK K 3
%% ANOVA BEFORE A TRANSFORMATION ***;
sk sk ok o o koK ok ok o ok ok ok o o K ok ok ok o Kok ok ok o sk ok ok ok ok ok ok ok ok 3
PROC GLM DATA=in PLOTS=(DIAGNOSTICS);
CLASS trt;
MODEL y = trt / SS3;
MEANS trt ;
TITLE ’ANOVA -- ORIGINAL DATA’;

3k ok ok ok ok ok ok ke ok sk ok ok ok o ok sk ok sk ok sk ok sk ok sk ok ok ke ok sk ok ok ok sk k ke k

*xx ANOVA AFTER A TRANSFORMATION **x*;
stk sk sk sk sk sk sk sk sk sk sk ok o ok kokokok sk sk sk sk sk sk sk sk sk sk sk ok ko ok kokok

DATA in; SET in;; sqrty = SQRT(y);

PROC GLM DATA=in PLOTS=(DIAGNOSTICS);

CLASS trt;
MODEL sqrty = trt / SS3;
MEANS trt;
TITLE ’ANOVA -- SQUARE ROOT TRANSFORMATION’;

RUN;
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