Overview of Multivariate Integration

Final Sections: 15.2-15.4, 15.6-15.8, 16.1-16.3, 16.6-16.7 (graphs only), 16.9

DOUBLE INTEGRALS : Cartesian, Polar

Iterated integrals in cartesian coordinates using via x-slice and y-slice are, respectively:
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Tterated integrals in cartesian coordinates using via polar coordinates
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Area elements
dA = dydx = dzdy = rdrdf

Coordinate conversions

x =rcosf y=rsingd

r=+22+y2 0 =arctan(y/z)

VOLUME INTEGRALS: Cartesian, Cylindrical, Spherical over solid F

Cartesian: One ordering is dV = dzdA = dzdydx
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Cylindrical 6 € [0,27),7 >0
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Spherical 6 € [0,27),¢ € [0,7],p >0
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Coordinate System | dV conversion formulae notes
Cartesian dzdydx *
Cylindrical r dzdrdl o= cps& r? = 2% +y?
y = rsinf
r = psin¢gcosb
Spherical p?sin ¢ dpdgdf y = psingsinf p?sin? ¢ = 22 + 2
Z = pcoso




LINE INTEGRALS

Let £(t) = z(t)i+ y(1)j + 2()k =< 2(t),y(t), 2(t) > with t € (t1,t5) be a parametrization of the curve C.

Line integrals of scalars f(z,y, z)

/C fa 2y ds= [ Fa(t)u(t), (1) [0 di (6)

t1

Noting the arclength element ds is given by
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If f =1, the integral is the arclength of C. If f=mass density per unit length, the line integral is mass of C.

Line integrals of vector fields F
Let F = Fi(x,y, z)i + Fy(x,y, z)j + F3(x, y, z)R =< Fy, Fy, F3 > be some vector field.
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If F is force, the line integral is the work done by the force along path C.
SURFACE INTEGRALS: Scalars and Vector Fields

Let S be a surface and N be normal to S. The normal vectors and surface elements dS are:

Description N ds Note:
Graph z=f(zy) | < —fo,—fy1> | IN|dA=/1+ f2+ f2 dA | On final
Parametrized surface | r(u,v) gr x &F IN| dudv = 98 x 9| dudv | Not on final

Scalar surface integrals of G(x,y,z) on a graph z = f(x,y)

G(w,y.2)dS = [ | F(z,y, f(z,y)) N| dA (9)
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If FF =1, the surface integral is the surface area of S. If F' =mass density per unit area, the surface integral
is the mass of S.

Vector surface integrals of F thru the graph z = flz,y)

Let S be an oriented surface, i.e., where the unit normal N has been uniquely specified.
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If F = ptU where p is fluid density, and ¥ is the velocity field of the fluid, then the flux is the net rate of mass
flow through S per unit time.

DIVERGENCE (GAUSS) THEOREM

Let V' be some solid region in space and S = 0V be its bounding closed surface. If N is the outward unit
normal to the surface then
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STOKES THEOREM

Let S be some oriented surface with unit normal N and boundary curve C' = 85. Then for any (smooth)
vector field F we have

//S(ﬁxf)-Ndsz F.dr (12)
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says that certain surface integrals can be converted to line integrals and vice versa. Here, the curl of F is:
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Green’s Theorem Is the special case of Stokes Theorem where the surface S is a region in the zy-plane,
i.e. S = R and therefore N = k.



