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1 Introduction to Autonomous Systems

In this section we will introduce some notations applicable for later
material involving differential equations and difference equations (and
maps). Let x = (x1, x2, . . . xn) ∈ IRn and t ∈ IR be time. Further we
shall use the notation

ẋ =
dx

dt
=

(
dx1

dt
,
dx2

dt
, . . .

dxn
dt

)

to denote derivatives. Thus, ẍ = d2x
dt2

. The order of a differential equation
is determined by the order of the highest derivative. Thus, if x(t) ∈ IR,

d3x

dt3
+ x3 = 0

is a third order (scalar) differential equation. To determine the order of a
system of coupled differential equations you sum the maximum orders of
all the derivatives of all the dependent variables. For example, consider
the system

d2x

dt2
− xd

2y

dt2
+ y = 0 (1)

d3x

dt2
− xdy

dt
+ x2 = 0. (2)

In the system, there are at most third derivatives of x(t)(n = 3) and
second derivatives of y(t)(m = 2) so the order of the system is n+m =
5.

We note that many scalar differential equations can be written as a
system first order differential equations. This is done by introducing
new dependent variables.

Example: If y(t) ∈ IR is a solution of

ÿ = g(y(t), ẏ(t))

then by defining x1 = y, x2 = ẏ this second order equation can be
written as the system

ẋ = f(x) =

(
f1(x1, x2)
f2(x1, x2)

)
=

(
x2

g(x1, x2)

)
.
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If the independent variable t occurs explicitly the equation is said to
be nonautonomous. If t does not occur explicity, the equation is au-
tonomous.

Example: The equation

ẏ2 + y2 − ÿ = 0

is autonomous whereas

ẏ2 + t2y2 − ÿ = 0

and
ẏ = y2 − t

are nonautonomous.
A system of ODEs can always be made autonomous by introducing

an extra (trivial) dependent variable y(t) = t. By doing this one in-
creases the order of the system:

Example: To convert the equation

ÿ + ety2 − ẏ = 0

into an autonomous system, introduce the dependent variables

x1 = y , x2 = ẏ , x3 = t.

Then

ẋ1 = x2

ẋ2 = x2 − x2
1e
x3

ẋ3 = 1.

Note that the system above can be written ẋ = f(x), x = (x1, x2, x3) if
we define the vector-valued function f : IR3 → IR3 by:

f(x) =

 f1(x1, x2, x3)
f2(x1, x2, x3)
f3(x1, x2, x3)

 =

 x2

x2 − x2
1e
x3

1

 .
Note that a system

ẋ = f(x, t) , x ∈ IRn,
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is autonomous if ∂f
∂t

= 0, i.e., ∂fk
∂t

= 0, k = 1, 2, . . . n for each of the
components of f 1

Example: Let y(t) and z(t) be solutions of the system

d3y

dt3
+ t2y − dz

dt
= 0

d2z

dt2
+ y − dy

dt
= 0.

To re-write the system above as an autonomous system of first order
equations, let

x1 = y, x2 = ẏ, x3 = ÿ, x4 = z, x5 = ż, x6 = t.

Then,

dx

dt
= f(x) =



x2

x3

x5 − x1x
2
6

x5

x2 − x1

1


is a 6th order autonomous system.

Some differential equations cannot be written in the form ẋ = f(x)
for a real valued function f . A trivial example is:

ẋ2 − x2 = 0 x ∈ IR,

since solving for ẋ yields f(x) = ±
√
x, i.e. two functions for x > 0 (not

to mention the complication that negative x(t) can also be solutions).
For the remainder of this course we shall only examine autonomous

systems of the form

ẋ = f(x) x ∈ IRn n ≤ 3

where f is continuously differentiable in the components xi of x.
Lastly, we state a definition for linearity of systems of first order dif-

ferential equations.

Definition 1 If x = (x1, x2, . . . xn) and f : IRn → IRn the first order
system of differential equations ẋ = f(x) is said to be linear if for some

1which presumes a certain smoothness of the function f
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matrix A(t) ∈ IRn×n and vector b(t) ∈ IRn, the vector valued function
f can be written

f(x) = A(t)x + b(t) .

If neither A nor b depends explicitly on t the system is said to be au-
tonomous. If b = 0 the system is said to be homogeneous.

Thus, the system

ẋ =

[
1 t
et t

]
x

is a second order linear homogeneous nonautonomous system whereas

ẋ =

 1 3 0
−1 2 1

0 1 3

x
is a third order linear homogeneous autonomous system.
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2 First Order Equations

First order autonomous initial value problems can (in principle) be solved
using separation of variables. For instance, the solution x(t) of

ẋ = f(x) , x(0) = x0

can be solved implicitly noting that∫ x(t)

x0

ds

f(s)
= t.

It is not always possible to invert this expression to find an explicit for-
mula for x(t). For example, applying this procedure to

ẋ = (x− 1)(x+ 1)(x− 2) , x(0) = x0

yields the expression

ln

(
(x+ 1)1/6(x− 2)1/3

(x− 1)1/2

)
| x(t)
x0

= t

which cannot be inverted explicitly. In the absence of a simple formula
for the solution, one may want easier techniques to determine qualitative
aspects of the solution such as if they are bounded, increase or approach
certain values as t→∞, to name a few.

Definition 2 A fixed point x̄ of

ẋ = f(x) , x ∈ IR

is any value for which f(x̄) = 0.

Fixed points are also called equilibria, steady states and critical points.
Note that if x̄ is a fixed point then x(t) = x̄ is a solution of the initial
value problem

ẋ = f(x) , x(0) = x̄

for all t > 0.

Example: ẋ = x2−4x+3 = (x−1)(x−3) = f(x) has two fixed points
x̄ = 1, 3.

Example: ẋ = f(x) = ex + x has a sole fixed point x̄. To prove this
fact, one would appeal to the intermediate value theorem. In particular,
f is continuous on IR and f → ±∞ as x→ ±∞ so that f must have at
least one root. But, since f ′(x) = ex + 1 > 0 for all x, the root must be
unique. Numerically, x̄ ' −0.567.
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Definition 3 A fixed point x̄ of

ẋ = f(x) , x ∈ IR

is said to be stable if for every ε > 0 there exists a δ > 0 such that
|x0 − x̄| < δ implies the solution x(t) of

ẋ = f(x) , x(0) = x0

satisfies |x(t) − x̄| < ε for all t ≥ 0. If x̄ is not stable, it is said to be
unstable.

In words this definition states that if the initial value x0 is sufficiently
close to the fixed point then the solution x(t) will remain close for all
time. That should be distinguished from the concept of asymptotic sta-
bility:

Definition 4 A fixed point x̄ of

ẋ = f(x) , x ∈ IR

is said to be asymptotically stable it is stable and if there exists a δ > 0
such that for every x0 with |x0 − x̄| < δ the solution x(t) of

ẋ = f(x) , x(0) = x0

approaches x̄, i.e., x(t)→ x̄ as t→∞.

which implies the solution x(t) gets closer to x̄ in time. For one dimen-
sional systems where f is continuous, these notions are most often iden-
tical. A trivial example illustrating the difference would be if f(x) = 0
for all x ∈ IR. Then, every point x̄ ∈ IR is a stable fixed point but none
are asymptotically stable. In higher dimensions, differences in these def-
initions can be more subtle.

Definition 5 If every solution x(t) of

ẋ = f(x) , x(0) = x0 ∈ IR

approaches x̄ as t → ∞ and f(x̄) = 0, then x̄ is said to be a globally
stable fixed point.

In practice one decides the stability of fixed points (for one dimen-
sional systems) by plotting the phase portrait for the system. In a phase
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portrait, one plots x versus ẋ. Since ẋ = f(x), the sign of f determines
regions where x(t) is increasing or decreasing in t.

Examples: in class

To make such phase plane arguments rigorous one needs to appeal to
the following Lemma (in [5]) 2.

Lemma 1 x̄ is an asymptotically stable fixed point of

ẋ = f(x) ,

if and only if there is a δ > 0 such that

0 < |x− x̄| < δ ⇒ (x− x̄)f(x) < 0.

Note that the later statement can be expanded into the two statements

f(x) < 0 if x ∈ (x̄, x̄+ δ)

f(x) > 0 if x ∈ (x̄− δ, x̄).

In words, if f is positive to the left of x̄ and negative to the right, then x̄
is asymptotically stable

2.1 Uniqueness of solutions

Proving that the initial value problem

ẋ = f(x) , x(0) = x0

has a solution (existence of solution) or that the solution is unique is not
an easy matter. Even if f(x) is continuous, solutions may not be unique.
To illustrate this, consider the problem

ẋ =
√
x = f(x) , x(0) = 0.

Here f(x) is continuous on the closed interval [0,∞) but it is easily
verified that

x(t) ≡ 0

and
x(t) =

1

4
t2

2A partial proof will be presented later
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are both solutions for all t ≥ 0. In fact, the situation is much worse.
There is a one parameter family of solutions:

xα(t) ≡
{

0 0 ≤ t ≤ α
1
4
(t− α)2 t > α

For every α > 0, xα(t) satisfies the differential equation and initial con-
dition. This is true even at t = α since ẋα(α) = 0 is defined (note how
the left and right derivatives are equal at t = α).

Theorems which guarantee the existence of unique solutions are dif-
ficult to prove. The following one can be found in [2].

Theorem 1 Let f : IR2 → IR, f = f(x, t). Assume that f and ∂f
∂x

are
continuous on the (closed) rectangular region

R = {(x, t) : |x− x0| ≤ b, t ∈ [0, a]}.

Defining

M = max
R
|f(x, t)| , α = min

{
a,

b

M

}
,

then the initial value problem

ẋ = f(x, t) , x(0) = x0,

has a unique solution for 0 ≤ t ≤ α.

This theorem says three things. A solution exists, it is unique and
it persists for at least a finite time. Persistence we will discuss later.
The proof of the existence of solutions requires generating a solution
candidate via something called Picard iteration. Here we briefly describe
this. If f(x) is continuous then integrating ẋ = f(x), x(0) = x0 yields
the identity

x(t) = x0 +
∫ t

0
f(x(s))ds.

Next, we define a sequence of functions xn(t) by the recursion

xn+1(t) = x0 +
∫ t

0
f(xn(s))ds , n = 0, 1, 2, . . .

where x0 is the initial condition. This formula defines Picard iteration.
For an arbitary f , Picard iteration would yield:

x1(t) = x0 +
∫ t

0
f(x0)ds = x0 + f(x0)t.
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Likewise,

x2(t) = x0 +
∫ t

0
f(x1(t))ds = x0 +

∫ t

0
f(x0 + f(x0)s)ds.

The object is to show that xn(t)→ X(t) and then verify that the function
X(t) satisfies the differential equation. Uniqueness is proven separately.
For details, see [2].

Example: For

ẋ = x2 + 1 = f(x) , x(0) = x0 = 0

Picard iteration yields

x1(t) = 0 +
∫ t

0
f(0)ds = t.

Then

x2(t) =
∫ t

0
f(x1(s))ds =

∫ t

0
(s2 + 1)ds = t+

t3

3
.

Continuing,

x3(t) =
∫ t

0
f

(
s+

s3

3

)
ds = t+

1

3
t3 +

2

15
t5 +

1

63
t7

The exact solution is x(t) = tan(t) whose Taylor series about t = 0
matches the first three terms of x3(t). In this manner, Picard iteration
can be used to compute Taylor series approximations of the solution. In
this specific case, though, note that the fourth term of x3(t) does not
equal the fourth term of the Taylor series:

x(t) = t+
1

3
t3 +

2

15
t5 +

17

315
t7 + · · · .

Suppose f(x) and its derivative f ′(x) are continuous on IR. Further
assume that f(x) is uniformly bounded on IR, i.e., there is a constant
K > 0 such that |f(x)| < K for all x ∈ IR. Then, using the Theorem, it
is not hard to show that solutions of the initial value problem

ẋ = f(x) , x(0) = x0

exist and are unique for all t ≥ 0 (can you prove this?). This fact can
be used to rigorously prove many of the facts about phase portraits. For
example,
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Lemma 2 Suppose that x̄ is a fixed point of ẋ = f(x) and that

(x− x̄)f(x) < 0 for all x ∈ IR, x 6= x̄,

i.e., x̄ is stable. Further suppose that the initial value problem

ẋ = f(x) , x(0) = x0 < x̄

has a unique solution x(t) for all t ≥ 0. Then, x(t) → x̄ as t → ∞
(monotonically in t).

Proof: First note that if x(T ) = x̄ at some finite time T < ∞ then
x(t) = x̄ for all t ≥ T . This is due to uniqueness of the solution. In
particular, the sole solution of

ẋ = f(x) , x(T ) = x̄

is x(t) = x̄. 3 If this is the case then it is trivially true that x(t) → x̄
as t → ∞. Regardless, we now know that x(t) is bounded above by
x̄. Since ẋ = f(x) > 0 for all x ∈ [x0, x̄), x(t) is a monotonically
increasing function which is bounded above. Thus 4, x(t) must approach
a limit X ≤ x̄ as t → ∞. We claim that X = x̄. Suppose not that
X < x̄ strictly. Then ẋ ≥ f(X) > δ > 0 for some δ and all t ≥ 0. This
implies x(t) ≥ δt + x0 and that x(t) reaches x̄ in finite time which is a
contradiction.

With a minor modification this proof can be adapted to show that
x(t)→ x̄ for x0 > x̄. Thus, we have shown that if the solution is unique
and persists for all t > 0 that asymptotic stability and stability are the
same. In essence, we have proven Lemma 1.

2.2 Linear Stability

If f(x) is a continuously differentiable function and f ′(x̄) < 0 at a fixed
point then we know that f(x) > 0 for x slightly smaller than x̄ and
f(x) < 0 for x slightly larger than x̄. In other words, if f ′(x̄) < 0, x̄ is
stable.

Definition 6 Let x̄ be a fixed point of ẋ = f(x). We say x̄ is linearly stable
if f ′(x) is continuous near x̄ and f ′(x̄) < 0.

3Note how this part of the proof indicates why you can’t “move” through a place where ẋ = 0.
4using a result from real analysis
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This definition must be used carefully. If x̄ is not linearly stable it
might be stable or possibly unstable. For example, if f(x) = x3, x̄ = 0
is not linearly stable since f ′(0) = 0 and the phase portrait implies it is
unstable. In contrast, if f(x) = −x3, x̄ = 0 is not linearly stable but is
stable. When f ′(x̄) = 0, “linear analysis” fails and other means must be
used to determine stability.

Note, however, if f ′(x̄) < 0 strictly then phase portraits would indi-
cate x̄ is unstable, i.e.,

Lemma 3 If ẋ = f(x), x ∈ IR, f(x̄) = 0 and f ′(x) is continuous near
x̄ then

f ′(x̄) < 0⇒ x̄ is unstable

So, why is it called linear stability? Suppose that x̄ is a fixed point of

ẋ = f(x) , x(0) = x0 (3)

Using Taylor’s Theorem (under appropriate smoothness assumptions about
f ) we may write

ẋ = f(x̄) + f ′(x̄)(x− x̄) +
1

2
f ′′(x̄)(x− x̄)2 + · · ·

If we define y(t) = x(t)− x̄ (noting f(x̄) = 0 because x̄ is a fixed point)
then

ẏ = f ′(x̄)y +
1

2
f ′′(x̄)y2 + · · · .

If we only keep the linear part of the right side we find

ẏ ' f ′(x̄)y

How “equal” the two sides are will depend on how close the initial con-
dition x0 is to x̄. It is also possible that the two sides are nearly equal for
a small time interval but that after some time they are very different.

The equation
ẏ = f ′(x̄)y (4)

is called the linearization of (3) about x̄. Some authors refer to (4) as
the linear variational equation since y is the variation from x̄. Notice
that if f ′(x̄) = 0, the linearization would be ẏ = 0 or that x(t) would
not change in time. Clearly that would be a bad approximation. This
is an instance when “linearization” fails and why one does not define
linear stability for that case. The basic theorem involving linear stability
analysis is (proven in [5]):
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Theorem 2 Suppose x̄ is a fixed point of

ẋ = f(x),

f ′(x) is defined and continuous near x = x̄, and f ′(x̄) < 0 then x̄ is
asymptotically stable.

Proof: Here we give a proof for f that are twice continuously differen-
tiable. First we set y(t) = x(t)− x̄ so that

ẏ = f(y + x̄).

It is then sufficient to show that y(t) → 0 as t → ∞ if |y(0)| is suffi-
ciently small. Taylor’s theorem then implies that for every y there is a
constant ηy which depends on (is a function of) y such that

f(y + x̄) = f(x̄) + f ′(x̄)y +
1

2
f ′′(ηy)y

2.

Defining g(y) = 1
2
f ′′(ηy)y

2 and noting f(x̄) = 0,

ẏ = F (y) ≡ f(y + x̄) = f ′(x̄)y + g(y). (5)

From (5) it is evident that g′(y) exists, is continuous and that g(0) =
g′(0) = 0. Since g′(y) is continuous, for every ε > 0 there is a δ > 0
such that |y| < δ ⇒ |g′(y)| < ε. Thus, from the identity

g(y) =
∫ y

0
g′(s)ds

we conclude that
|g(y)| ≤ ε|y|

and that for y ∈ (−δ,+δ)

(f ′(x̄)− ε)y ≤ F (y) ≤ (f ′(x̄) + ε)y.

Therefore, for ε sufficiently small, the sign of F (y) near the fixed point
y = 0 is the same as f ′(x̄) making y = 0 a stable fixed point of (5). By
Lemma 1, y = 0 is asymptotically stable proving the result.

2.3 Blowup

Some solutions exist but for only a finite time. One reason is that they
blowup, i.e |x(t)| → ∞ as t → T− for some T < ∞. For instance, the
solution of

ẋ = f(x) = x2 + 1 , x(0) = 0

14



is x(t) = tan(t) which blows up as t→ π
2
. What is surprising about this

example is that f(x) is a perfectly simple and differentiable function.
Knowing for how long a solution exists is also not easy to prove apri-

ori but Theorem 1 gives at least one way of estimating a lower bound α
of the times for which a unique solution must exist. Ideally, one wants
to find a and b for which α defined by

M = max
R
|f(x, t)| , α = min

{
a,

b

M

}
(6)

is as big as possible. It is easy to make α small by letting a → 0+. So,
without any loss of generality, we may as well choose

α =
b

M
=

b

max|x−x0|≤b |f(x)|

when the system is autonomous. This α is a function of b, i.e., α = α(b).
So long as a maximum M exists, then the biggest one could make this α
is by choosing a b which maximizes it:

α(b) ≤ α∗ = max
b>0

b

max|x−x0|≤b |f(x)|
.

Then, we are still assured that unique solutions exist for t ∈ [0, α∗]. To
illustrate an application of this we have the following example:

Example: Find an α∗ for which Theorem 1 guarantees the existence of a
unique solution of

ẋ = f(x) = x2 + 1 , x(0) = x0 = 0

for all t ∈ [0, α∗]. First note that for any b, the maximum value of |f(x)|
on [−b, b] is M = b2 + 1. Thus,

α∗ = max
b>0

b

b2 + 1
.

Elementary calculus (or a plot) reveals thatG(b) = b
b2+1

has a maximum
at b = 1 at whichG(1) = 1

2
so that a solution must exist for all t ≤ α∗ =

1
2
. Note that the true solution x(t) = tan(t) exists for t larger than this

estimate, i.e., t < π
2
. This emphasizes the fact that α∗ is a lower bound

only.
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2.4 Comparsion Methods for Blowup

One way that you can show a solution blows up is to compare the solu-
tion with one that you know blows up. For example, suppose you know
that the solution x(t) of

ẋ = f(x) , x(0) = x0

blows up at t = T . Then consider the separate problem

ẏ = g(y) , y(0) = x0

noting it has the same initial condition. If g(x) ≥ f(x) for all x then
ẏ ≥ ẋ for all t for which x(t) and y(t) exist. Since they have the same
initial condition, y(t) ≥ x(t) which implies that y must blow up at some
time T ∗ ≤ T .

Stated more precisely we have the following:

Theorem 3 Let x(t) and y(t) be solutions of the following initial value
problems:

ẋ = f(x) , x(0) = x0

ẏ = g(y) , y(0) = x0

and assume such solutions exist ∀t ∈ [0, a]. Then, if g(x) ≥ f(x) for all
x,

y(t) ≥ x(t) , ∀t ∈ [0, a] .

For a proof of this Theorem see Theorem 6.1 in [4]. Below we illustrate
an application.

Example: Show that the solution of

ẏ = g(y) = y4 + y2 + 1 , y(0) = 1

blows up. First note that the solution of

ẋ = f(x) = x2 + 1 , x(0) = 1

is x(t) = tan(t + π
4
) which blows up at T = π

4
. Since g(x) ≥ f(x) for

all x, y(t) must blow up at a time T ∗ ≤ π
4
.

We conclude this section by making some remarks about differential
inequalities. In the aforementioned comparison arguments we appeal to
the logic that if ẋ ≥ ẏ and x(0) = y(0) then x(t) ≥ y(t) for all t for
which solutions exist. A (generally) false converse type of argument is
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that x(t) ≥ y(t) implies ẋ > ẏ. One cannot differentiate both sides of
an inequality and expect to retain the ordering. For example, let x(t) =
2t− 2 and y(t) = t. Then,

x(t) < y(t) , ∀t < 1

and,
ẋ(t) > ẏ(t) , ∀t < 1 .

2.5 Potential Functions

Another way of visualizing why some fixed points are stable while others
are unstable is to use a potential function. If

ẋ = f(x)

then we define a potential function:

V (x) = −
∫ x

f(s)ds.

Then,

ẋ = −dV
dx

.

For any solution x(t) we have

d

dt
V (x(t)) =

dV

dx

dx

dt
= −f(x(t))2 ≤ 0

or that V decreases 5. From its definition, fixed points occur where V ′ =
0, i.e., the slope is zero. Moreover, V ′′(x) = −f ′(x) so if V is (strictly)
concave up at a fixed point, the fixed point is (linearly) stable. The local
minima of V form “wells” in the potential where the solution x(t) must
then “fall” into.

Example: The potential function associated with ẋ = x− x3 is

V (x) =
∫ x

(s− s3)ds =
1

4
x2(1− x2).

A graph of V (x) shows that V is concave up only at its sole local minima
x = 0. This corresponds to the sole stable fixed point of ẋ = x− x3.

5strictly speaking V is non-increasing since it could remain constant
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3 Fundamental Bifurcations of ẋ = f(x, µ), x ∈ IR

A question of interest is how the location and stability of fixed points of
a system

ẋ = f(x, µ), x ∈ IR

depends on a parameter (or parameters) µ. If such a system is a model
of some physical, chemical or biological problem then it is particularly
important to keep track of stable fixed points since those represent what
the state variable would tend to as t → ∞. In modelling situations,
fixed point location is also important. For instance, most state variables
(concentration, population, mass) are positive so only nonnegative fixed
points are physical.

Roughly speaking, as one varies a parameter fixed points can coalesce
with other fixed points, appear, disappear and change their stability. Val-
ues of (x, µ) at which such things occur are called bifurcation points
6. There are of course many ways which these things can happen and
they all depend on the definition of f(x, µ). But, generally speaking,
there are three generic types of bifurcations: Saddle node, Transcritical
and Pitchfork. Each of these types of bifurcations has a generic system
which exemplifies their salient features. Respectively, these systems are

ẋ = f(x, µ) = x2 + µ (7)
ẋ = f(x, µ) = µx− x2 (8)
ẋ = f(x, µ) = µx− x3 (9)

In subsequent sections we shall discuss each of these bifurcations and
theory related to identifying such bifurcations.

3.1 Saddle-Node Bifurcations

Consider the first order differential equation

ẋ = f(x, µ) = µ+ x2

where µ ∈ IR is a parameter. For µ > 0 this equation has no fixed points.
At µ = 0 it has the sole (unstable) fixed point x̄ = 0. But for µ < 0 it
has two fixed points. Solving f = 0 for x one finds the two branches of
fixed points:

x̄± = ±
√
−µ , µ < 0.

6this is not a precise definition of a bifurcation point but will suffice for the moment

18



It is easily verified that the branch x̄+ are stable equilibria while the other
branch x̄− is unstable.

When the two branches are plotted as a function of µ the stable (node)
and unstable (saddle) fixed points coalescese at a bifurcation point (µ∗, x∗) =
(0, 0). The locus of fixed points in the (µ, x)-plane together with a la-
belling of the fixed points stability 7 constitute a bifurcation diagram. It
must be noted that one need not solve f = 0 for x to be able to plot the
locus of equilibria. Viewed another way µ = x2 gives the locus as a sole
function of x, i.e., one need not compute “branches”.

This particular bifurcation is called a saddle-node bifurcation. The
name comes from the fact it is a one-dimensional analog of the bifurca-
tion where a saddle and a stable node coalescece in a planar system. In
some textbooks, authors refer to the bifurcation as one with a “quadratic
tangency” because the locus when viewed as a function of x, µ = µ(x)
is locally quadratic near the bifurcation point (µ∗, x∗). By definition, at
a saddle node bifurcation with quadratic tangency one must have

dµ

dx
(x∗) = 0, (10)

d2µ

dx2
(x∗) 6= 0. (11)

Example: Show that ẋ = µ− x + x3 has two saddle-node bifurcations.
The locus of equilibria is given by µ = µ(x) = x − x3. Solve µ′(x) =
1−3x2 = 0 yields x∗± = ± 1√

3
Since µ′′(x∗±) = ∓2

√
3 6= 0, the condition

(11) is satisfied and there are two saddle-node bifurcation points

(µ∗+, x
∗
+) =

(
2

9

√
3,

1√
3

)
, (µ∗−, x

∗
−) =

(
−2

9

√
3,− 1√

3

)
.

3.2 Saddle Node Local Theory

Though the preceding introductory examples illustrate ways to detect
saddle node bifurcations, alternate methods based on more general local
theory are sometimes useful. At a practical level, it may not be possible
to solve f(x, µ) = 0 for x as a function of µ or µ as a function of x. In
this section we introduce theory which leads to a theorem which can be
used in such settings. To begin we introduce the following defintion:

7solid line for stable, dashed lines for unstable
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Definition 7 A fixed point x̄ of ẋ = f(x, µ) is hyperbolic if ∂f
∂x

(x̄, µ) 6= 0.

Hyperbolicity of fixed points is at the very heart of bifurcation theory. In
latter sections we will show that all the basic bifurcation points (saddle
node, transcritical, pitchfork) correspond to nonhyperbolic fixed points.

Next, we will adopt subscript notation for partial derivatives. For ex-
ample fx = ∂f

∂x
, fµ = ∂f

∂µ
, fxµ = ∂2f

∂x∂µ
, etc. Thus, x̄ is hyperbolic if

fx(x̄, µ) 6= 0.
In instances where it is not possible to find explicit expressions for the

locus of equilibria one may still want to decide if a bifurcation point is a
saddle-node bifurcation. Here we will develop a Taylor series decription
of saddle-node bifurcations based on the idea of quadratic tangency.

Suppose that on the locus of equilibria µ = µ(x), i.e. µ is a function
of x in a neighbourhood of the suspect bifurcation point. If the bifurca-
tion occurs at (µ∗, x∗) then by letting

X = x− x∗ , η = µ− µ∗

the differential equation for X is

Ẋ = F (X, η) = f(X + x∗, η + µ∗)

which has a bifurcation at (X, η) = (0, 0). Thus, without any loss of
generality we will assume that the bifurcation occurs at (µ, x) = (0, 0).

In this setting f(0, 0) = 0, µ(0) = 0 and

f(x, µ(x)) = 0

for all x near the bifurcation point. Differentiating this expression in x
yields

fx(x, µ(x)) + fµ(x, µ(x))
dµ

dx
= 0 (12)

which when solved for µ′(x) = dµ
dx

gives

µ′(x) = −fx(x, µ(x))

fµ(x, µ(x))
.

One condition which must be satisfied at a quadratic tangency is that
µ′(0) = 0. Given the formula above, this can only happen if

fx(0, 0) = 0 (13)
fµ(0, 0) 6= 0. (14)
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Together, the conditions (13)-(14) imply that x = 0 is a nonhyperbolic
fixed point. For there to be a quadratic tangency, however, we also need
to have µ′′(0) 6= 0. By differentiating (12) in x, evaluating the resulting
expression at x = 0 and using (13) it can be shown that

fxx(0, 0) + fµ(0, 0)µ′′(0) = 0.

Because fµ(0, 0) 6= 0, µ′′(0) 6= 0 only if

fxx(0, 0) 6= 0. (15)

In conclusion, a saddle-node bifurcation with quadratic tangency will
exist if the three conditions (13)-(15) are satisfied. We can also deduce
that the Taylor series expansion of f about such a bifurcation point will
have the form

f(x, µ) = a0µ+ a1x
2 + a2xµ+ a3µ

2 +O(3)

for some constants a0 6= 0,a1 6= 0, a2 and a3. Here, O(3) is notation
to indicate higher order terms in the Taylor series, i.e., x3, x2µ, . . .. In
the next section we will discuss how one can simplify this expression to
create what is called the “normal form” for the bifurcation.

Theorem 4 Let ẋ = f(x, µ) and assume that for all (µ, x) near some
point (µ∗, x∗) f has continuous (mixed) derivatives up to and including
third order, i.e., fx, fµ, fxx, . . . , fxµµ, fµµµ. If

f(x∗, µ∗) = 0 (16)
fx(x

∗, µ∗) = 0 (17)
fµ(x∗, µ∗) 6= 0 (18)
fxx(x

∗, µ∗) 6= 0 (19)

then ẋ = f(x, µ) has a saddle-node bifurcation with quadratic tangency
at (µ∗, x∗).

Example: Consider

ẋ = f(x, µ) = µ− x− e−x.

A nonhyperbolic equilibria exists at any pair of (µ, x) such that

f = 0 ⇔ µ− x− e−x = 0

fx = 0 ⇔ −1 + e−x = 0

21



Thus (µ∗, x∗) = (1, 0) is a bifurcation point. Since fxx(x, µ) = −e−x,
fxx(0, 1) = −1 6= 0. Lastly, fµ = 1 6= 0 so that a saddle-node bifurca-
tion of quadratic tangency occurs at (µ∗, x∗) = (1, 0), i.e.,

f = 0 , fx = 0 , fµ 6= 0 , fxx 6= 0.

The (2-variable) Taylor series of f(x, µ) about (µ∗, x∗) = (1, 0) is

f(x, µ) = (µ− 1)− 1

2
x2 +

1

6
x3 +O(x4)

so that
ẋ = η − 1

2
x2 +O(x3)

where η = µ − 1 is a new parameter. For this example, the equation
above is in “normal form”.

Note that some saddle-node bifurcations do not result from “quadratic”
tangencies. For example,

ẋ = µ+ x4

has a saddle-node bifurcation at (µ, x) = (0, 0) even though fxx(0, 0) =
0. This is an example of a “quartic” tangency. Clearly other more com-
plicated variants can occur as well. For example, just consider what
happens at (µ, x) = (0, 0) if

ẋ = (x2 − µ)(x2 − 4µ).

Also, some bifurcations that are quadratic are not a result of a saddle-
node bifurcation. For example, consider

ẋ = f(x, µ) =
√
µ− x , µ ≥ 0,

which has a sole branch of fixed points x =
√
µ and a quadratic tangency

at x = 0. At (µ∗, x∗) = (0, 0) two branches of fixed points do not
coalescece. This example does not violate Theorem 4 since fµ(0, 0) is
not defined, let alone continuous for all (µ, x) near (µ∗, x∗) = (0, 0).

Example: Consider a minor variant of the previous example:

ẋ = f(x, µ) = µ− x− e−µx.

We will show that this problem has two bifurcations with quadratic tan-
gencies. Thus, we want to show that there are two pairs (µ, x) that
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satisfy:

f(x, µ) = µ− x− e−µx = 0 (20)
fx(x, µ) = −1 + µe−µx = 0 (21)
fµ(x, µ) = 1 + xe−µx 6= 0 (22)
fxx(x, µ) = −µ2e−µx 6= 0 (23)

Equations (20)-(21) are used to locate the bifurcation point (i.e., and
that the fixed point be “nonhyperbolic”) whereas the condition (22)-(23)
are used to verify that there is a quadratic tangency in the bifurcation
diagram.

Note that (21) implies

e−µx =
1

µ
(24)

so that if a solution (µ, x) exists it must have µ > 0. Using (24) in (20)
one finds

x = x∗(µ) = µ− 1

µ
, µ > 0.

So if µ = µ∗ at the bifurcation point the associated value of x = µ∗ −
1/µ∗ 8. Using this in (21) we conclude that µ∗ must be a root of

g(µ) = fx(x
∗(µ), µ) = µe1−µ2 − 1 , µ > 0.

Next we will verify that g(µ) has two positive roots. First note that
g(0) = −1 and g(µ) → −1 as µ → ∞. Thus, it suffices to deter-
mine the location of maxima and minima of g to determine the number
of roots it has. From

g′(µ) = e1−µ2
(
1− 2µ2

)
,

it is evident that g′(µ) = 0 at µ = µ± = ± 1√
2
. Of these values only

µ+ > 0. Since g(µ+) = 1√
2
e1/2 − 1 ' 0.17 > 0, g has a sole positive

maximum at µ = mu+. By the intermediate value theorem, g must have
two roots µ∗1 and µ∗2 with 0 < µ∗1 < µ+ < µ∗2. By inspection µ∗2 = 1. The
other value is (numerically) µ∗1 ' 0.45. In conclusion, there are only two
nonhyperbolic fixed points.

To decide if the bifurcation diagram has a quadratic tangency we first
note that fxx < 0 for any µ > 0 so that (23) is satisfied. Lastly, using

8note that this is not an equation for the “branch” of equilibria µ̄
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(24) in (22) we find

h(µ) = fµ(x∗(µ), µ) = 2− 1

µ2

and, since h(µ∗1) 6= 0 and h(µ∗2) 6= 0, there are quadratic tangencies at
the bifurcation points (µ∗1, x

∗
1) and (µ∗2, x

∗
2).

3.3 Near Identity Transformations and Saddle-Nodes

A near identity transformation between a variable x and y is one of the
form

x = y(1 + φ(y))

where the function φ is smooth and φ(0) = 0. It is the latter property
which makes the transformation “nearly” the identity when y is small.
If one expands the function φ(y) in a Taylor series about y = 0 there
would be constants φn, n = 1, 2, . . . such that

x = y(1 + φ1y + φ2y
2 + φ3y

3 + · · ·)

Such transformations are often used to simplify expressions in a variety
of analytical settings. Here we will demonstrate a use in simplifying the
normal form of the saddle node bifurcation of

ẋ = f(x, µ)

pressumed to occur (without loss of generality) at (µ, x) = (0, 0). It
was previously found that the Taylor series expansion of the differential
equation about a quadratic tangency has the form

f(x, µ) = a0µ+ a1x
2 + a2xµ+ a3µ

2 +O(3) (25)

where a0 6= 0,a1 6= 0.
We seek to find φn(µ), n = 1, 2, . . . in the near identity transforma-

tion

x = y(1 + φ1(µ)y + φ2(µ)y2 + φ3(µ)y3 + · · ·) = y(1 + φ(y, µ)) (26)

so that the Taylor series expansion for the associated differential equa-
tion for y(t) has the form

ẏ = g(y, η) = η(µ) + y2 +O(3) (27)
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where η is new parameter which is a function of µ, invertible near µ = 0
and η(0) = 0. By finding the coefficients φn(µ), n = 1, 2, . . . we will
have demonstrated all saddle-node bifurcations with quadratic tangency
can be transformed into our original model problem (27).

First note that given (26)

ẋ = (1 + φ(y, µ) + yφy(y, µ))ẏ = f(y(1 + φ(y, µ)), µ).

Thus

ẏ = g(y, η) =
f(y(1 + φ(y, µ)), µ)

1 + φ(y, µ) + yφy(y, µ)
. (28)

Calculations from here on are laborious 9 but straightforward. One sim-
ply uses the expansions (25) and (26) in (28) and then expand about
y = 0 collecting powers of y along the way. This procedure yields:

g(y, η) = g0 + g1y + g2y
2 +O(y3)

where

g0 = µ(a0 + a3µ)

g1 = a2µ− 2g0φ1

g2 = 2a1 − 2a2φ1µ+ 8g0φ
2
1 − 6g0φ2.

Now we choose φ1 and φ2 so that g1 = 0 and g2 = 2a1 (which by
assumption is nonzero). Then,

φ1(µ) =
a2µ

2(a0 + a3µ)

φ2(µ) =
a2

2

6(a0 + a3µ)2
(2− β).

and
dy

dt
= g(y, η) = g0 + 2a1y

2 +O(y3).

Now we rescale time by setting τ = 2|a1|t so that

dy

dτ
=

g0

2a1

± y2 +O(y3)

with the ± being determined by the sign of a1. Further, we make the
identification

η(µ) =
g0

2a1

=
µ(a0 + a3µ)

2a1

9not too bad when done with a symbollic manipulation program such as Maple or Mathematica
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one finds
dy

dτ
= η(µ)± y2 +O(y3) (29)

where our new parameter η vanishes at µ = 0 and is invertible in the
vicinity of µ = 0. This shows how all saddle-node bifurcations can be
transformed into the normal form (29).

3.4 Transcritical Bifurcations

Transcritical bifurcations differ from saddle node bifurcations in that as a
parameter is varied fixed points do not appear or disappear. The simplest
system having a transcritical bifurcation is:

ẋ = f(x, µ) = x(µ− x)

This problem has two branches of fixed points for all µ ∈ IR:

x̄1(µ) ≡ 0 , x̄2(µ) = µ

It is not hard to determine that x̄1 is stable for µ < 0 and unstable for
µ > 0. Conversely, x̄2 is unstable for µ < 0 and stable for µ > 0. Thus,
the two branches coalescese and exchange stability at the transcritical
bifurcation point (µ∗, x∗) = (0, 0). More generally one can define tran-
scritical bifurcations by these properties. For instance, if for µ 6= µ∗ but
near µ∗ there are two (hyperbolic) fixed points of opposite stability and
there is a sole fixed point at µ = µ∗ then typically the system is said to
have a (2 branch) transcritical bifurcation at (µ∗, x∗) = (0, 0).

Depending on f , a system can have multiple transcritical bifurca-
tions:

Example: Consider

ẋ = f(x, µ) = (x− 1)
(
(x− 2)2 − µ2)

)
This system has three branches of fixed points

x̄1 = 1 , x̄2 = 2 + |µ| , x̄1 = 2− |µ| .

which intersect at three different transcritical bifurcation points

(µ∗1, x
∗
1) = (−1, 1) , (µ∗2, x

∗
2) = (1, 1) , (µ∗3, x

∗
3) = (0, 2) .
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Although not necessary, most transcritical bifurcations occur when two
branches of fixed points cross transversely. By this we mean that local
to the bifurcation point the branches form a nonzero angle. A simple
example illustrating the importance of this transversality condition is:

Example: Consider

ẋ = f(x, µ) = x(µ− g(x))

where g(x) is a continuously differentiable function with g(0) = 0 and
g′(0) 6= 0. This system has two branches of fixed points

x̄1 = 0 , x̄2 = g(x) .

These branches cross transversely at a transcritical (TC) point (µ∗, x∗) =
(0, 0) since g′(0) 6= 0. Note that if g′(0) = 0 this might not be the case.
For instance, consider g(x) = x2. Then the problem would only have a
sole fixed point for µ < 0.

Transversality is not a prerequisite for (TC) bifurcations, however. A
simple example illustrating this is:

Example: Consider

ẋ = f(x, µ) = x2 − µ4

This system has two branches of fixed points

x̄1 = µ2 , x̄2 = −µ2 .

These branches do not cross transversely at (µ∗, x∗) = (0, 0). The
branches are in fact tangent to one another yet (0, 0) is a (TC) point
since for µ 6= 0 there are two fixed point branches of oppositie stabilty
that coalescese at (0, 0).

Lastly, we note that some bifurcations might also be called transcritical
in that more than two branches coalescese at a sole point. Technically
there is no formal naming scheme for such cases but they retain the es-
sential properties of a “2-branch” (TC) bifurcation. Namely, the number
of stable and unstable branches of hyperbolic fixed points on either side
of µ∗ is the same. A simple example is:

Example: Consider

ẋ = f(x, µ) = x(x− µ)(x− 2µ)(x− 3µ)

This system has four branches of fixed points that intersect at the “de-
generate” transcritical bifurcation point (µ∗, x∗) = (0, 0).
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TC

Figure 1: Generic transcritical bifurcation showing that f(x, µ) = 0 does not imply
µ = µ(x) or x = x(µ).

3.5 Transcritical Local Theory

Suppose that two disjoint branches of fixed points intersect at a trans-
critical bifurcation point. From Figure 1 it is easy to see that near (TC),
f(x, µ) = 0 does not imply that there is a single function which de-
scribes both branches of fixed points.

Now suppose that we consider the Implicit Function Theorem stated
below:

Theorem 5 (IFT) Let f : IR2 → IR, f = f(x, µ) and that f , fx and fµ
are continuous for all (x, µ) near (0, 0). If

(i) f(0, 0) = 0
(ii) fµ(0, 0) 6= 0

then there is a unique function µ̄(x) which is continuously differentiable
such that

f(x, µ̄(x)) = 0

for all x near x = 0.

Considering this theorem fµ must vanish at a (TC) bifurcation point.
Alternately by swapping x and µ in the theorem, fx must also vanish.
The latter implies that fixed points must (like at saddle node bifurca-
tions) be nonhyperbolic at transcritical bifurcations. Like saddle node
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bifurcations, there are theorems which place sufficiency conditions on f
assuring that transcritical bifurcations exist.

Theorem 6 Let f : IR2 → IR, f = f(x, µ) have continuous derivatives
of all orders up to and including degree three, i.e., f, fµ, . . . fxxµ near
(µ∗, x∗). If

f(x∗, µ∗) = 0 (30)
fx(x

∗, µ∗) = 0 (31)
fµ(x∗, µ∗) = 0 (32)
fxµ(x∗, µ∗) 6= 0 (33)
fxx(x

∗, µ∗) 6= 0 (34)

then ẋ = f(x, µ) has a ( 2 branch) transcritical bifurcation at (µ∗, x∗).

Example: Let

ẋ = f(x, µ) = µln(x) + x− 1

The first three conditions of the Theorem are:

f = µln(x) + x− 1 = 0 (35)

fx =
µ

x
+ 1 = 0 (36)

fµ = ln(x) = 0 (37)

Solving (36)-(37) one finds (µ∗, x∗) = (−1, 1) as a candidate for a (TC).
It is easily verified that (35) is also satisfied and that

fxµ =
1

x
6= 0

fxx = − µ

x2
6= 0

at (µ∗, x∗) = (−1, 1). By the Theorem one concludes there is a (2-
branch) transcritical bifurcation point at (µ∗, x∗) = (−1, 1).

Much like saddle node bifurcations, such Theorems lead to normal
forms for (TC) bifurcations. For example, if (µ∗, x∗) is a pair which
satisfies the hypotheses of the Theorem then

ẋ =
1

2
fµµ(µ∗, x∗)(µ−µ∗)2+fxµ(µ∗, x∗)(x−x∗)(µ−µ∗)+1

2
fxx(µ

∗, x∗)(x−x∗)2+O(3)
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Making the definitions

y = x− x∗ , η = µ− µ∗

one has the normal form

ẏ = aη2 + bηy + cy2 +O(3)

where a, b, c are constants and bc 6= 0.
Example: For the previous example

ẋ = f(x, µ) = µln(x) + x− 1

where (µ∗, x∗) = (−1, 1) is a (TC) bifurcation point,

ẋ = (x− 1)(µ+ 1) +
1

2
(x− 1)2 +O(3)

leading to the normal form

ẏ = y
(
η +

1

2
y
)

+O(3)

3.6 Pitchfork Bifurcations

The generic pitchfork bifurcation (PF) can be described by the system

ẋ = f(x, µ) = µx− x3 = x(µ− x2)

whose loci of fixed points can be described by

x̄ = 0 , ∀µ
µ̄(x) = x2 , ∀x .

It is not hard to show that x̄ = 0 is stable only for µ < 0 and unstable
otherwise. Also, both fixed points on the branch µ̄ = x2 are stable re-
sulting in a characteristic “pitchfork” shape illustrated in Figure 2. This
system is said to have a pitchfork bifurcation at (µ∗, x∗) = (0, 0). Since
two stable fixed points surround and unstable (hyperbolic) fixed point
near (0, 0) the pitchfork is said to be supercritical.

The stability of the branches in this example can be reversed by mak-
ing the transformation t→ −t resulting in

ẋ = f(x, µ) = −µx+ x3 = −x(µ− x2)
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Figure 2: Generic pitchfork bifurcation for ẋ = µx− x3

Then, the branch µ̄(x) is unstable and near the bifurcation point two
unstable fixed points surround a stable fixed point. Such a pitchfork is
said to be subcritical.

Example: Any system of the form

ẋ = x(µ− g(x))

where g(0) = g′(0) = 0 and g′′(0) 6= 0 will have a pitchfork bifurcation
at (µ∗, x∗) = (0, 0). The criticality (super or sub) of the pitchfork will
depend on the sign of g′′(0). These conditions on g(x) imply that g is
locally quadratic near x = 0. For this reason the system may be said
to have a pitchfork bifurcation of quadratic tangency at (µ∗, x∗). Thus,
both of the following systems have pitchfork bifurcations of quadratic
tangency at (0, 0).

ẋ = x(µ− e−x2)
ẋ = x(µ− sin(x2))

Some pitchfork bifurcations clearly do not have quadratic tangencies.
For instance, consider

ẋ = x(µ− g(x)) = x(µ− x4)
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Here g(0) = g′(0) = g′′(0) = 0.

Example: Consider

ẋ = f(x, µ) = −x(x2 + µ2 − 1)

The equilibria lie on x = 0 and the circle x2 + µ2 = 1 so this sys-
tem clearly has two pitchfork bifurcations at (µ∗, x∗) = (−1, 0) and
(µ∗, x∗) = (1, 0). Since x2 + µ2 − 1 < 0 only inside the circle, x̄ = 0
is unstable only for µ ∈ [−1, 1] so that both pitchfork bifurcations are
supercritical.

Lastly, like saddle node and transcritical bifurcations there are theorems
which can be used to determine whether a system has a pitchfork bifurca-
tion. In the next section we iclude such a theorem for detecting pitchfork
bifurcations having quadratic tangencies. Here, we that theorem in the
following example.

Example:

3.7 Theorems for Saddle-Node, Transcritical and Pitchfork Bifur-
cations

Here we summarize some theorems for “generic” saddle-node, transcrit-
ical and pitchfork bifurcations of

ẋ = f(x, µ) , x, µ ∈ IR.

Proofs use the implicit function theorem, near identity transformations
and various other transformations. In all of the the theorems below
we assume that f has continuous (mixed) derivatives up to third order
(fourth for pitchforks) for all (µ, x) near the bifurcation point (µ∗, x∗).

Theorem 7 If there is a pair (µ∗, x∗) for which

f(x∗, µ∗) = 0 (38)
fx(x

∗, µ∗) = 0 (39)
fµ(x

∗, µ∗) 6= 0 (40)
fxx(x

∗, µ∗) 6= 0 (41)

then ẋ = f(x, µ) has a saddle-node bifurcation with quadratic tangency at (µ∗, x∗).

Transcritical (2-branch)
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Theorem 8 If there is a pair (µ∗, x∗) for which

f(x∗, µ∗) = 0 (42)
fx(x

∗, µ∗) = 0 (43)
fµ(x

∗, µ∗) = 0 (44)
fxµ(x

∗, µ∗) 6= 0 (45)
fxx(x

∗, µ∗) 6= 0 (46)

then ẋ = f(x, µ) has a ( 2 branch) transcritical bifurcation at (µ∗, x∗).

Pitchfork (Quadratic Tangency)

Theorem 9 If there is a pair (µ∗, x∗) for which

f(x∗, µ∗) = 0 (47)
fx(x

∗, µ∗) = 0 (48)
fµ(x

∗, µ∗) = 0 (49)
fxx(x

∗, µ∗) = 0 (50)
fxµ(x

∗, µ∗) 6= 0 (51)
fxxx(x

∗, µ∗) 6= 0 (52)

then ẋ = f(x, µ) has a pitchfork bifurcation with quadratic tangency at (µ∗, x∗).

3.8 Bifurcation diagrams for one dimensional equations

We have been studying the stability structure of

ẋ = f(x, µ) , x, µ ∈ IR

over ranges of µ. Assuming a certain degree of smoothness of f in
(x, µ) we stated three theorems concerning the existence of saddle-node
(quadratic tangency), transcritical (two-branch) and pitchfork (quadratic
tangency) bifurcations. These theorems can be used to determine ex-
actly what the bifurcation diagrams look like near the bifurcation point
(µ∗, x∗).

Several other “bad” things can happen.

Definition 8 Let
ẋ = f(x, µ) , x(t) ∈ IR,

and suppose that f(x̄) = 0. Further suppose that there is an ε > 0 such
that on the interval (x̄− ε, x̄+ ε) f has no other roots. Then we say that
x̄ is an isolated fixed point.
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Not all fixed points are isolated. We show this by way of example.
First, let us define a special function:

φ(µ) =

{
µ2 µ ≤ 0
0 µ > 0

.

This function has a few properties. First φ > 0 if µ < 0. Also, φ = 0 for
all µ ≥ 0. Moreover, φ(µ) and φ′(µ) are continuous on IR.

Now, consider the problem

ẋ = f(x, µ) = φ(µ)x.

Here f, fx and fµ are continuous on IR2 and in particular at µ = 0.
However, note that for each fixed µ ≥ 0, the problem has an infinite
number of fixed points. For example, f(x, 1) = 0 for any x. Clearly,
such fixed points are not isolated by the definition above. Moreover,
given our previous definitions of stability and asymptotic stability, these
non-isolated fixed points are stable but not asymptotically stable. We
can see this by way of example too. For instance, set µ = 1. Then the
associated initial value problem is trivial:

dx

dt
= 0 , x(0) = x0.

and has the solution x(t) = x0 for all t. Certainly x̄ = 1 is a non-isolated
fixed point but no matter how close x0 is to x̄, x(t) does not approach x̄
as t → ∞. Therefore, x̄ = 1 is not asymptotically stable. On the other
hand, for every x0 close to x̄ = 1, x(t) does not move away. Hence it is
stable.

Even if fixed points are isolated, the function φ(µ) can be used to
create examples of relatively smooth functions f which yield unusual
bifurcation diagrams. Toward this end, let us first define two new func-
tions:

φ+(µ) = φ(µ) + φ(1− µ) (53)
φ−(µ) = φ(µ)− φ(1− µ) (54)

Graphs of these functions show that both are zero for µ ∈ [0, 1]. For
µ 6 ∈[0, 1], φ+ > 0. But, φ− is positive only for µ < 0. Otherwise, it is
negative or zero.

Now, consider the following problems:
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A) ẋ = f(x, µ) ≡ (x2 − µ2)2

B) ẋ = f(x, µ) ≡ (x4 − φ(µ))2

C) ẋ = f(x, µ) ≡ (x4 − φ+(µ))2

D) ẋ = f(x, µ) ≡ (x4 − φ−(µ))2

E) ẋ = f(x, µ) ≡ φ+(µ)− x4

F) ẋ = f(x, µ) ≡ µ2(4x2 − 1)2

In Figure 3, the bifurcation diagrams are drawn for each example.
Notice that, in all but Figure 3E, two unstable fixed points coexist at the
same µ values. For example, in Figure 3B the branches x̄ = x̄+(µ) =√
|µ| and x̄ = x̄−(µ) = −

√
|µ| are both unstable for µ < 0. This is an

example where branch stability does not alternate from branch to branch
for fixed µ. The reason this can happen is due to the fact that the branches
are nonhyperbolic. That is to say, at each fixed µ the fixed points x̄±(µ)
are non hyperbolic. A simple calculation can be used to verify this. For
example B),

fx(x, µ) = 8x3(x4 − φ(µ)).

Then,
fx(x̄±(µ), µ) = 0

for all µ < 0. Moreover, since fx(0, µ) = 0 too, all fixed points are
nonhyperbolic!

Now we state a theorem:

Theorem 10 Let
ẋ = f(x, µ) , x(t) ∈ IR (55)

where f(x, µ) and fx(x, µ) are continuous on IR. If at some fixed µ, (55)
has exactly n isolated hyperbolic fixed points x̄k, k = 1, 2, . . . n in some
interval then the stability of the fixed points must alternate.

This theorem is not violated by our previous examples because (in all
but example E) all the fixed points are isolated but nonhyperbolic. This
leads us to a strategy for creating bifurcation diagrams:

i) Locate all fixed points by find all pairs (x, µ) that satisfy f = 0.
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Figure 3: Figure shows bifurcation diagrams for examples A)-F) The horizontal axis
is µ, the vertical is x. Dashed lines indicate unstable fixed points. Solid lines indicate
stable fixed points
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ii) Locate all the nonhyperbolic fixed points (xnh, µnh) by finding all
solutions (x, µ) of the system:

f(x, µ) = 0

fx(x, µ) = 0

iii) Compute the stability of a single branch of fixed points (pick the
easiest to deal with).

iv) Hopefully, all fixed points will be isolated and you have a finite
number of nonhyperbolic fixed points. Then, by using the theorem
you can deduce the stability of the other fixed points since they
must all be isolated and hyperbolic.

Recipes such as this can be dangerous. Here’s a word of warning.
Suppose you decided to locate all transcritical bifurcations by finding
(x, µ) pairs which are solutions to the three equations

f(x, µ) = 0 (56)
fx(x, µ) = 0 (57)
fµ(x, µ) = 0 (58)

It might turn out that it is easiest to solve (57)-(58) and the verify that the
values of (x, µ) so obtained also satisfy (56). Thus, it is a nonhyperbolic
fixed point. However, it may not be the only hyperbolic fixed point. For
example, at a saddle-node bifurcation the fixed point is nonhyperbolic
but fµ 6= 0!

3.9 Structural Stability and Bifurcations

Suppose we wish to exam the bifurcation structure of the equation:

ẋ = f(x, λ) , λ = (λ1, λ2, . . . , λk) ∈ IRk

We have examined saddle node, transcritical and pitchfork bifurcations
for the case k = 1. When a second parameter is introduced some of
these bifurcation diagrams are radically altered. Consider the following
generic problems where λ = (λ1, λ2):

(SN) ẋ = f(x, λ) = λ1 + λ2 + x2

(TC) ẋ = f(x, λ) = λ2 + λ1x− x2
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(PF) ẋ = f(x, λ) = λ2 + λ1x− x3

When λ2 = 0, (SN), (TC) and (PF) have saddle node, transcritical and
pitchfork bifurcations (x, λ1) = (0, 0), respectively, as the parameter λ1

is varied. One can show (as was done in class) that if λ2 6= 0 is fixed that
these bifurcations in λ1 are “preserved” only for the saddle node case.
To describe in a mathematically rigorous manner what “preserve” means
we need to define a few concepts.

Definition 9 If h : IR → IR is continuous and invertible on IR we say
that h is a homeomorphism on IR. If in addition, h is continuously dif-
ferentiable on IR we say that h is a diffeomorphism on IR.

For example, h(x) = 2x + 1, h(x) = tanh(x) and h(x) = x3 are all
diffeomorphisms. Certain piecewise defined functions are homeomor-
phisms but not diffeomorphisms. For example,

h(x) =

{
2x x ≤ 0
x x > 0

is a homeomorphism on IR but not a diffeomorphism on IR since h′(0)
is undefined.

One use of diffeomorphisms 10 is to simplify differential equations.
For example, suppose h(x) is a diffeomorphism and we let y(t) = h(x(t)).
Then if x(t) is a solution of

ẋ = f(x) ,

y(t) must be a solution of

ẏ = F (y) = h′(h−1(y))f(h−1(y))

If one chooses h in an intelligent way the resulting function F may be
simpler than the original f(x). Solutions to the original problem can
be recovered easily since if one knows y(t) then x(t) = h−1(y(t)), i.e.,
the inverse exists. Moreover, all of the flow “topology” is retained. For
instance, if the y equation has a finite number of isolated fixed points, so
will the x equation.

Definition 10 Two scalar differential equations ẋ = f(x) and ẏ =
F (y) each with a finite number of isolated fixed points are said to be

10of which there are many uses
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topologically equivalent if there exists a homeomorphism h(z) on IR
such that
a) if for every solution x(t) of ẋ = f(x), y(t) = h(x(t)) is a solution of
ẏ = F (y),
b) if a fixed point of x̄ of ẋ = f(x) is stable (unstable) then ȳ = h(x̄) is
a stable (unstable) fixed point of ẏ = F (y).

This defintion basically says that all the essential stability information
is retained but the exact location of fixed points and the rate of approach
to stable fixed points may be altered. Now for:

Definition 11 Let ẋ = f(x, λ) where λ = (λ1, . . . λk) is a parameter
in IRk. The equation ẋ = f(x, λ̄) is structurally stable if there exists an
ε > 0 such that ẋ = f(x, λ̄) is is topologically equivalent to ẋ = f(x, λ)
for all λ with ‖ λ− λ̄ ‖< ε.

The norm ‖ · ‖ can be any norm but usually taken to be the Euclidean
distance norm, i.e., for k = 2 the distance:

‖ λ− λ̄ ‖=
√

(λ1 − λ̄1)2 + (λ2 − λ̄2)2.

In our in class examples, it is clear that only SN is structurally stable at
λ̄ = (0, 0). Both the TC and PF bifurcations are structurally unstable.
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4 Dynamics on S1

For the problem
ẋ = f(x) , f : IR→ IR

the function f can be consider as a vector field on IR. As such, solutions
x(t) form a “flow” on IR and one can discuss the dynamics on IR induced
by the vector field f . Sometimes such dynamics will involve a discussion
of fixed-point stability and bifurcations. Other times f never vanishes
and x(t) is monotonic in t.

Differential equations can induce flows on other “geometrical” ob-
jects. One such “object” is S1. S1 is defined to be the unit circle (cen-
tered at the origin) in IR2. Suppose that f : IR → IR and f(θ) is 2π-
periodic in θ, i.e.,

f(θ + 2π) = f(θ) , ∀θ.

Consider a point P (t) with coordinates P (t) = (x(t), y(t)) constrained
to move on S1. If we define the polar coordinate transformation (x, y)↔
(r, θ) via

x = r cos θ , y = r sin θ

then the motion of P can unambiguously be described by the set of dif-
ferential equations:

ṙ = 0

θ̇ = f(θ)

Here the periodicity of f is essential to “unambigously” describe the
dynamics of P on S1 in the sense that we require the velocity to be the
same at every point on S1. Note that this is different than the motion
of a particle moving on the circle whose speed increases upon every
revolution. Such a particle motion might better be described by the non-
autonomous equation

θ̇ = f(θ, t)

We define dynamics on S1 to be that flow induced by a periodic f(θ).
Given this definition, then any flow on IR induced by a T -periodic

function F (x) can be mapped onto a flow on S1. To see this suppose

ẋ = F (x) , F : IR→ IR , F (x+ T ) = F (x) ∀x ∈ IR.
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Now define
θ =

2πx

T
.

Then

θ̇ = f(θ) ≡ 2π

T
F

(
Tθ

2π

)
. (59)

Note that the calculations

f(θ + 2π) =
2π

T
F
(
T

2π
(θ + 2π)

)
=

2π

T
F

(
Tθ

2π
+ T

)
= f(θ)

verify that f is 2π-periodic in θ so that (59) does describe a flow on S1.

Example: ẋ = sin (2πx) is a 1-periodic flow on IR which can be mapped
to the flow θ̇ = sin(θ) on S1.

Even if the vector field F (x) on IR is not periodic in x, the flow can
be mapped to S1 using a transformation which compactifies the real line
onto (−π, π). For example, let

ẋ = F (x) , F : IR→ IR .

Choose any function φ : IR → IR that is smooth, invertible and has the
range (−π, π). An example of such a function is

φ(x) = π tanhx.

Then, let
θ(t) = φ(x(t))

so that, for ψ(x) = φ−1(x),

x(t) = ψ(θ(t)).

Differentiation of the latter expression in t yields:

ẋ = ψ′(θ)θ̇ = F (ψ(θ))

or that

θ̇ = f(θ) ≡ F (ψ(θ))

ψ′(θ)
(60)
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Here, since φ is invertible on IR, ψ′(θ) > 0 strictly. Moreover, if x̄ is a
fixed point of ẋ = F (x) then, from (60), θ̄ = φ(x̄) is a fixed point of
θ̇ = f(θ).

Below is an example of this compactification process.

Example: Let x(t) be a solution of ẋ = x2 + 1 and define

θ = π tanh(x)

Note that θ ∈ (−π, π) so that the dynamics of θ(t) can be mapped into
S1. By differentiating the above expression in t,

θ̇ = πsech2x (x2 + 1)

which by using the inverse transformation x = tanh−1
(
θ
π

)
and the hy-

perbolic identity sech2 x = 1− tanh2 x becomes

θ̇ = F (θ)

where

F (θ) = π

(
1− θ2

π2

)(
1 + tanh−1

(
θ

π

))
.

The function F is defined only on the open interval (−π, π). From a
graph it can be seen that F > 0 but that F → 0 as |θ| → π−.

To extend the dynamics of θ(t) to be defined on all of S1 we let

F̄ (θ) =

{
F (θ) θ ∈ (−π, π)
0 θ = π

and set
θ̇ = F̄ (θ)

By doing so, the fixed point at θ = π can be regarded as the “point”
x =∞ in

ẋ = x2 + 1

Specifically, the limit θ → −π+ corresponds to x → −∞ whereas
θ → π− corresponds to x → ∞. With this interpretation the equa-
tion θ̇ = F̄ (θ) can be regarded as a mapping of the original problem
on the extended reals ĪR = IR ∪ {∞} to S1. Moreover, since F̄ > 0 on
(−π, π), θ(t) increases toward the fixed point θ̄ = π (despite the fact it is
unstable, i.e. “half-stable”). This reflects the dynamics of the “blowup”
in the original problem for x. It does not, however, say anything about
how much time this approach to “∞” at θ̄ = π will take. From the exact
solution x(t) = tan(t+ t0) we know it takes a finite time.
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4.1 Periodic Solutions on S1

From previous analyses we know that for smooth f , there do not exist
(nontrivial) T -periodic solutions θ(t) to

θ̇ = f(θ) (61)

even if f is periodic in its argument. For instance, solutions θ(t) of

θ̇ = sin(θ)

are not periodic in t even though f(θ) is periodic in θ.
Neverthless, the dynamics that equation (61) imposes on S1 can be

periodic. For example, suppose that f is 2π-periodic and strictly posi-
tive, i.e., f(θ) > 0,∀θ ∈ [0, 2π). The coordinate of a point P (t) on S1

at time t is

P (t) = (x(t), y(t)) = (cos θ(t) , sin θ(t)).

Since f > 0, θ(t) increases in t indefinitely so that after a certain time
T > 0 the point P (t) returns to its original position, i.e.,

P (t+ T ) = P (t).

In fact since f is periodic this period of revolution T is the same the next
time around and

P (nT + t) = P (t) , n = 1, 2, 3, . . . .

From the differential equation the period T can easily be deduced as:

T =
∫ 2π

0

dθ

f(θ)

Example: The equation θ̇ = f(θ) = ω where ω > 0 is constant describes
pure rotation on S1. The solution with θ(0) = θ0 is θ(t) = ωt+θ0 and is
not periodic in t even though f(θ) = ω is periodic in θ (every constant
function is). The period is clearly T = 2π/ω as can be computed:

T =
∫ 2π

0

dθ

ω
=

2π

ω
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Example: For ω > a > 0 the equation

θ̇ = ω − a sin θ

describes a nonlinear oscillation on S1 since f(θ) > 0. The period
T can be computed using tables and careful evaluations of necessary
limits:

T =
∫ π

−π

dθ

ω − a sin θ
=

2π√
ω2 − a2

In particular, using the indefinite integral

F (x) ≡
∫ x dθ

ω − a sin θ
=

1

2
√
ω2 − a2

arctan

(
ω tan(x/2)− a√

ω2 − a2

)

one finds

T = lim
ε→0+

F (π − ε)− F (−π + ε) =
2π√
ω2 − a2

.

For a near ω the problem is close to a saddle-node bifurcation and the
period increases greatly. In this instance θ̄ = π

2
acts as a “ghost” fixed

point and the solution takes a long time to traverse by that value - making
T large. This large value can be estimated as follows:

T =
2π√

(ω − a)(ω + a)
∼ TB ≡

2π√
2a(ω − a)

as a→ ω. Here the symbol ∼ means “asymptotic to” and has a precise
meaning which we will not define at the moment.

4.2 Saddle-Nodes, Ghosts and Bottleneck durations

In the preceding example

θ̇ = f(θ) = ω − a sin θ

the equation undergoes a saddle-node bifurcation at ω = a as the pa-
rameter a is varied. The fixed point at this bifurcation is θ̄ = π

2
. For

a > ω the problem has two fixed points, one of which is stable and the
other unstable. But, for a < ω an oscillation persists. This is true even
if 0 < ω − a � 1 but then the period T is very large. This is due to the
fact that f(θ) is very small near θ = π

2
. In this instance, the flow has a
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“bottleneck” due to the “ghost” fixed point θ̄ = π
2
. Here, θ̄ = π

2
is called

a “ghost” fixed point because even though it technically is not a fixed
point, it acts like one by slowing the flow down for a long time.

The same “bottleneck” occurs when any first order equation (be it
on IR or S1) is near a saddle-node bifurcation. Here we will derive an
asymptotic approximation of the period T for the case when the equation
is near a saddle-node of quadratic tangency. Toward this end, let θ(t) be
a solution of

θ̇ = f(θ)

where f is strictly positive, 2π-periodic and θ̄ is a local minimum of f
with

f ′(θ̄) = 0 , f ′′(θ̄) > 0.

At a saddle-node bifurcation of quadratic tangency these conditions are
satisfied.

Now define the small positive parameter

ε = f(θ̄) > 0

and Taylor expand f(θ) about θ̄ as follows:

f(θ) = f(θ̄) + f(θ̄)(θ − θ̄) +
1

2!
f ′′(θ̄)(θ − θ̄)2 + g(x)

= ε+
1

2!
f ′′(θ̄)(θ − θ̄)2 + g(x)

where we have defined x as the variance from θ̄ as

x = θ − θ̄

and g(x) is the exact remainder. By solving for g as follows:

g(x) = f(θ)− ε− 1

2!
f ′′(θ̄)(θ − θ̄)2

it can be verified that

g(0) = g′(0) = g′′(0) = 0. (62)

The exact period of the oscillation is:

T =
∫ 2π

0

dθ

ε+ 1
2!
f ′′(θ̄)(θ − θ̄)2 + g(x)

.

45



Since the integrand is 2π-periodic in θ this integral can be written

T =
∫ π

−π

dx

ε+ bx2 + g(x)
(63)

where we have defined

b =
1

2!
f ′′(θ̄) > 0.

Now, let
y =

x√
ε

so that (63) becomes

T =
1√
ε

∫ π√
ε

− π√
ε

dy

1 + by2 +
g(
√
εy)
ε

(64)

If the term
g(
√
εy)
ε

in the integrand is sufficiently small as to not con-
tribute significantly to the integral, then it should be the case that

T ∼ 1√
ε

∫ π√
ε

− π√
ε

dy

1 + by2

or, in the limit as ε→ 0,

T ∼ 1√
ε

∫ ∞
−∞

dy

1 + by2

By evaluating the latter integral and using the definition of b and ε we
arrive at

T ∼ TB ≡ π

√
2

f(θ̄)f ′′(θ̄)
(65)

This approximation is valid for a general bottleneck duration near a
saddle-node bifurcation of quadratic tangency. For example, had the
saddle-node been “quartic” and had a Taylor series like f = ε + bx4 +
O(x5) the approximation would be different.

Also, the argument made to arrive at this approximation should have

made the reader a bit suspicious since the term
g(
√
εy)
ε

looks like it might
be large, especially since there is a division by ε (which is very small).
However, the remainder g(x) in the Taylor series has the form

g(x) =
1

3!
x3 +

1

4!
x4 +O(x5)
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so that
g (
√
εy)

ε
=

1

3!

√
εy3 +

1

4!
εy4 +O(ε3/2).

These informal calculations show that
g(
√
εy)
ε

= O(
√
ε) is indeed small

in the limit ε → 0. A very careful treatment indicating the accuracy
of the approximation (65) can be made but we do not include it here.
The basic idea of such proofs is to show that the difference between
the exact value T and the asymptotic approximation TB is of a lower
order. Instead of discussing these issues we illustrate an application of
the approximation.

Example: We show how to use (65) to obtain an estimate for the (large)
period of the oscillation on S1 induced by

θ̇ = f(θ) = ω − a sin θ

when a ' ω. The local mimina of f occurs at θ = π
2

at which f ′(θ)
vanishes and

f
(
π

2

)
= ω − a

f ′′
(
π

2

)
= a

From (65),

T ∼ TB = π

√
2

a(ω − a)
.

This is the same result we obtained earlier for this problem.
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5 Planar Systems - Preliminary Definitions

By a planar system of differential equations we mean a system of the
form:

ẋ1 = f1(x1, x2)

ẋ2 = f2(x1, x2)

where fi : IR2 → IR, i = 1, 2. This system can be written in the compact
form

ẋ = f(x) (66)

by making the identifications:

x(t) =

(
x1(t)
x2(t)

)
, f(x) =

(
f1(x1, x2)
f2(x1, x2)

)
.

In particular, f is a vector-valued function, i.e., f : IR2 → IR2. Also,
we may write the column vector x above as x = (x1, x2)T where the
superscript T means transpose. Unless otherwise stated we will assume
that solutions exist for all time and that the components of f are twice
continuously differentiable on IR2.

To make latter definitions more compact we define the Euclidean
norm of x ∈ IR2 by

‖ x ‖=
√
x2

1 + x2
2 , x = (x1, x2)T .

Then the Euclidean distance between x, y ∈ IR2 is

d(x, y) =‖ x− y ‖=
√

(x1 − y1)2 + (x2 − y2)2.

We shall then define a δ-neighbourhood of x as the set of points a dis-
tance at most δ from x, or:

Nδ(x) = {y ∈ IR2 : ‖ x− y ‖< δ.}

Definition 12 x̄ is a fixed point of ẋ = f(x), f : IR2 → IR2, if f(x̄) = 0.

Definition 13 A fixed point x̄ of ẋ = f(x) is isolated if ∃δ > 0 such that
y ∈ Nδ(x̄) and y 6= x implies f(y) 6= 0.
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Thus, if x̄ is an isolated fixed point, there is some (small) neighbour-
hood of x̄ that contains no other fixed point. We will adopt the following
definitions related to the stability of fixed points.

Definition 14 A fixed point x̄ of ẋ = f(x) is Liapunov stable if ∀ε > 0
∃δ > 0 such that if x(t) is a solution of

ẋ = f(x) , x(t0) = x0 ∈ Nδ(x̄)

then
‖ x(t)− x̄ ‖< ε , ∀t ≥ t0 .

Notice that for this definition to make sense δ ≤ ε else there would
be some initial conditions x0 ∈ Nδ(x̄) for which x(t) would initially
be outside the neighbourhood Nε(x̄) it is required to remain in for all
t ≥ t0. In words, this definition implies that the solutions x(t) remain
close to the fixed point for all time if the initial condition is sufficiently
close to x̄.

Definition 15 A fixed point x̄ of ẋ = f(x) is stable if it is Liapunov
stable.

Thus, for our conventions, stable and Liapunov stable are equivalent.

Definition 16 A fixed point x̄ of ẋ = f(x) is attracting if ∃δ > 0 such
that if x(t) is a solution of

ẋ = f(x) , x(t0) = x0 ∈ Nδ(x̄)

then
lim
t→∞
‖ x(t)− x̄ ‖= 0

Notice that this definition does not preclude the possibility of x(t) leav-
ing the neighbourhoodNδ(x̄) for some time. However, it does imply that
x(t) must eventually return to and stay in Nδ(x̄). Since large excursions
are possible, some attracting fixed points are normally not thought of as
“stable”.
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Definition 17 A fixed point x̄ of ẋ = f(x) is globally attracting if ∀x0 ∈
IR2 the solution x(t) of

ẋ = f(x) , x(t0) = x0

satisfies
lim
t→∞
‖ x(t)− x̄ ‖= 0.

Definition 18 A fixed point x̄ of ẋ = f(x) is asymptotically stable if it is
both Liapunov stable and attracting.

Definition 19 A fixed point x̄ of ẋ = f(x) is neutrally stable if it is
Liapunov stable but not attracting.

Definition 20 A fixed point x̄ of ẋ = f(x) is unstable if it is not stable.

Notice that, by definition, if x̄ is asymptotically stable it is also Lia-
punov stable. Also, not all attracting fixed points are necessarily asymp-
totically stable so that the definitions are mutually exclusive. Below we
summarize these definitions in a Table:

Attracting? Liapunov Stable?

Asymptotic Stability Y Y
Neutral Stability N Y

Unstable N N
Y N

It should be remarked that there are different conventions in the defi-
nitions of stability throughout the literature. Some also address stability
of solutions that are not fixed points. For instance, some authors define
the Liapunov stability of a solution x∗(t) of an initial value problem in
the same way that the Liapunov stability of a fixed point is defined. In
particular,

x0 ∈ Nδ(x
∗(t0))⇒‖ x(t)− x∗(t) ‖< ε , ∀t ≥ t0
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This sort of issue will become important when we talk about periodic
solutions of planar systems.

More importantly, depending on the source the definitions above can
have different names. For example, in [7], “Liapunov Stable” is “sta-
ble” but our definition of “attracting” is equivalent to their definition of
“asymptotically stable” (page 128). In our textbook [8], “stable” and
“asymptotically stable” are equivalent which should be contrasted with
[5] (page 266) where “stable” is equivalent to “Liapunov stable” (the
convention we adopt). The author [9] has identical definitions to ours
except do not have a definition for an “attracting” fixed point. In [5],
“attracting” fixed points are also not defined. In [4, 6], there are also
separate definitions for uniform stability and Poincare stability. Thus,
when consulting other resources it is important to know which definition
is being used! The definitions for “stability” are especially important
since “unstable” is most often defined as “not stable”. Our textbook,
however, gives the definition of “unstable” as “neither attracting nor Li-
apunov stable” (page 129). This definition is a bit vague in my opinion.
If one is to interpret that as meaning it is not Liapunov stable and it is not
attracting then a fixed point that is attracting but but not Liapunov stable
is not stable (by their definition) yet it is not unstable! For this and other
reasons we are adopting the definitions set out in this writeup.
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6 Review of Linear Algebra

Here we give an overview of some linear algebra tools and definitions
needed to solve and analyze the dynamics of linear systems in the next
section.

First, the imaginary number i is that number such that i2 = −1 and
the symbol IC will be used to denote the space of complex numbers. Thus
z ∈ IC has the form

z = a+ ib , a, b ∈ IR

We will also need the identity

ez = ea(cos b+ i sin b)

which is proveable using Taylor series expansions.
For any matrix A ∈ ICn×n, we define the nullspace N(A) of A as:

N(A) = {x ∈ ICn : Ax = 0} .

The zero vector is always in N(A). A necessary condition for N(A) to
be nontrivial (not only the zero vector) is that its determinant vanishes.
In this case, A is not invertible.

If A ∈ IC2×2,

A =

[
a11 a12

a21 a22

]
, aij ∈ IC,

then its determinant is

det(A) = a11a22 − a12a21

If det(A) 6= 0 the inverse matrix A−1 of A ∈ IC2×2 exists and is given by
the simple formula:

A−1 =
1

det(A)

[
a22 −a12

−a21 a11

]
.

For A ∈ IC2×2 (“2 by 2” matrices) the computation of the nullspace is
very simple. If det(A) = 0 then the (two) row vectors of A are necessar-
ily dependent so row reduction is not needed to find a spanning vector
for N(A). The example below illustrates the determination of such a
spanning vector.
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Example 1 For the matrix

A =

[
2 −1
−6 3

]
,

the equation Ax = 0 is equivalent to

2x1 − x2 = 0

−6x1 + 3x2 = 0

Setting x1 = 1 one finds x2 = 2 so that by defining ~ζ = (1, 2)T , the
nullspace of A is any multiple of ~ζ or

N(A) = span{~ζ}.

The nullspace is the line x2 = 2x1 in IR2.

In order to solve linear systems of differential equations we must first
define eigenvalues, eigenvectors and eigenspaces. Though we will only
be dealing with real matrices A we will state the definitions as if A were
complex.

Definition 21 Let A ∈ ICn×n. A number λ ∈ IC is an eigenvalue of A if
there exists an x ∈ ICn, x 6= 0 such that Ax = λx. Any such x associated
with an eigenvalue λ is an eigenvector of A. Further, for any eigenvalue
λ of A we define the eigenspace Eλ(A) of A as:

Eλ(A) = {x ∈ ICn : Ax = λx}.

An alternate way of thinking of eigenvalues is that they are those λ
for which N(A − λI) is nontrivial (here I is the identity matrix). This
is only possible if det(A− λI) vanishes. Thus, eigenvalues are roots of
the characteristic polynomial

P (λ) ≡ det(A− λI) = 0 .

Example 2 Let

A =

[
0 1
6 1

]
.

Then

P (λ) = det

([
−λ 1
6 1− λ

])
= λ2 − λ− 6 = (λ− 3)(λ+ 2) .
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Thus, the eigenvalues of A are λ1 = 3 and λ2 = −2. To find an eigen-
vector ~ζ1 of A associated with the eigenvalue λ1 note that

A− λ1I =

[
−3 1

6 −2

]

so that ~ζ1 = (1, 3)T and Eλ1(A) = span{(1, 3)T}. In IR2 this space is
the line x2 = 3x1. For the other eigenvalue λ2 one finds ~ζ2 = (1,−2)T

and the eigenspace Eλ2(A) = span{(1,−2)T} is the line x2 = −2x1.

Now we have the standard diagonalization theorem:

Theorem 11 (Diagonalization) If A ∈ ICn×n has n distinct (nonequal)
eigenvalues λ1, λ2, . . . λn with associated eigenvectors ~ζ1, ~ζ2, . . . ~ζn then
the matrix S with ~ζj as its columns

S = [~ζ1, ~ζ2, . . . ~ζn]

diagonalizes A as follows

S−1AS = Λ

where

Λ = diag(λ1, λ2, . . . λn) =


λ1 0 · · · 0
0 λ2 · · · 0

0 0
. . . 0

0 0 0 λn

 .

It can easily be verified that in our previous example the matrix

S = [~ζ1, ~ζ2] =

[
1 1
3 −2

]

diagonalizes A. Note, however, that not all matrices can be diagonalized
by their eigenvectors. Indeed, the matrix

A =

[
0 1
0 0

]

has a characteristic polynomial

P (λ) = λ2
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and thus has only one eigenvalue λ = 0. Since λ = 0 is a double root it
is said to have algebraic multiplicity 2. Noting, E0(A) = N(A) we see
that the eigenspace is one dimensional and is spanned by the eigenvector
~ζ = (1, 0)T . Thus, in this instance there are not two eigenvectors with
which to form S!

Eigenvectors can be normalized so their Euclidean norm is 1. For our
previous example,

‖ ~ζ1 ‖=
√

10

so that

ζ̂1 =

(
1√
10
,

3√
10

)T
is the normalized eigenvector associated with λ1. Then, a symmetric 11

matrixA ∈ IRn×n can be orthogonally diagonalized by an orthogonal matrix.
If A is a real symmetric matrix satisfying the assumptions of the previ-
uos Theorem then this orthogonal matrix Q is formed by the normalized
eigenvectors:

Q = [ζ̂1, ζ̂2, . . . ζ̂n] , Q−1AQ = Λ.

By defintion, a matrix is orthogonal if

Q−1 = QT

or that their transpose is their inverse. As a consequence

‖ Qx ‖=‖ x ‖ , ∀x ∈ IRn

or that they preserve length.

11AT = A
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7 Linear Planar Systems - Definition and Fixed Points

A linear system of differential equations in IR2 is a system of the form:

ẋ1 = a11x1 + a12x2

ẋ2 = a21x1 + a22x2

where ai,j, i, j = 1, 2, can be functions of t. Unless otherwise stated,
however, we will assume ai,j are constants.

Letting x = (x1, x2)T be a column vector with x1(t) and x2(t) as its
components, the system above can be written:

ẋ = Ax (67)

where the matrix A ∈ IR2×2 is:

A =

[
a11 a12

a21 a22

]
.

Providing det(A) 6= 0 the system ẋ = Ax has the sole fixed point
x = (0, 0). If det(A) = 0 then every x̄ ∈ N(A) is a fixed point.

Example 3 Let

ẋ = Ax =

[
2 −1
4 −2

](
x1

x2

)
Since det(A) = 0 the nullspace is nontrivial. The first row of Ax = 0 is
equivalent to 2x1 − x2 = 0. Setting x1 = 1 yields x2 = 2 so that N(A)
is spanned by the vector ζ = (1, 2)T , i.e.,

N(A) = span{(1, 2)T} .

Geometrically, N(A) is the line x2 = 2x1. All points on this line are
fixed points of ẋ = Ax.

8 Solutions to IVP of Linear Systems in the Plane

Let p1(t) and p2(t) be two two solutions of the system ẋ = Ax, where
A ∈ IR2×2. That is,

ṗi = Api , i = 1, 2

where pi(t) ∈ IR2. The Wronskian of p1 and p2 is the determinant of
the matrix whose columns are formed by the column vector solutions pi,
i.e.,

W (p1, p2) = det[p1|p2].
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The two solutions p1 and p2 are said to be linearly independent if their
Wronskian does not vanish 12 . If the solutions are linear independent
then the general solution of the initial value problem

ẋ = Ax , x(0) = x0

is given as
x(t) = c1p1(t) + c2p2(t)

where c1 and c2 are constants.
For any matrix A and vector c = (c1, c2)T , the product Ac yields a

linear combination of the columns of A. Thus, by defining the matrix

Ψ(t) = [p1(t)|p2(t)]

the general solution x(t) can be written:

x(t) = Ψ(t)c .

Since the solutions forming the columns of Ψ are linearly independent,
Ψ is invertible. Given the initial condition for x,

x(0) = x0 = Ψ(0)c ⇒ c = Ψ(0)−1x0 .

Therefore,

x(t) = Φ(t)x0 , Φ(t) = Ψ(t)Ψ(0)−1 . (68)

The matrix Φ is referred to as the Fundamental Solution Matrix for the
problem although some authors also call Ψ a Fundamental Solution Ma-
trix. There is only one Φ but the Ψ are not unique. For example one
could have just as easily defined Ψ = [ap1|p2] where a is any constant.

Since Φ(t) is unique it is sometimes written

Φ(t) = eAt

where A is the original matrix defining the planar system. Precise defi-
nitions for functions of matrices (eA, sin(A), etc.) is part of the subject
of spectral theory (in Functional Analysis) and is usually accomplished
using Taylor series. For instance, since An makes sense for any integer
so the convergence of the series

eAt = I + tA+
1

2!
t2A2 + · · ·

12It can be shown [1] that the Wronskian of two solutions is either identically zero or it never vanishes
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can be discussed using matrix norms. It can be shown that the series on
the right does converge to the fundamental matrix Φ(t) but we do not
need to discuss such issues here. Be aware, however, that some books
develop the theory for linear systems using a complete development of
the definition of eAt.

Given a matrix A, equation (68) implies the solution x(t) for any
initial condition x0 can be found if one can determine Ψ(t). In most
instances, this this amounts to finding the eigenvalues and eigenvectors
of A. To see why this is, suppose one assumes a solution of the form

x(t) = eλtζ , ζ =

(
ζ1

ζ2

)

where λ ∈ IC is some constant and ζ ∈ IC2 is some constant vector.
Substituting this expression into ẋ = Ax yields

λeλtζ = eλtAζ

or
Aζ = λζ .

If λ were chosen so that the only ζ which solved this problem were
ζ = 0 then the resulting solution x(t) ≡ 0 is uninteresting. However,
if λ is an eigenvalue of A then there do exist nontrivial ζ ∈ N(A −
λI). Therefore, it appears that a prerequisite for determining Ψ(t) is to
find all the eigenvalues and eigenvectors of A. Although this is true,
some other issues complicate matters but overall the construction of the
Fundamental Solution Matrix can be categorized into three classes which
we discuss in the subsequent three sections.

8.1 Real, Distinct Eigenvalues

Suppose that A ∈ IR2×2 has two real and distinct eigenvalues λ1, λ2,
λ1 6= λ2 with respective eigenvectors ζ1 and ζ2 (Note here that ζi are
vectors and not components of a vector). From basic linear algebra the-
ory it can be shown that these eigenvectors are independent and that as a
result the following two solutions are linearly independent 13

x1(t) = eλ1tζ1 , x2(t) = eλ2tζ2

13we omit the details
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Thus, a Fundamental Solution Matrix is:

Ψ(t) = [eλ1tζ1|eλ2tζ2] ,

from which Φ(t) can be computed.

Example 4 Let

ẋ = Ax =

[
1 1
4 1

](
x1

x2

)
The characteristic polynomial for A is

P (λ) = det(A− λI) = (1− λ)2 − 4

The roots of P are the eigenvalues. In this case λ1 = 3 and λ2 = −1.

(A− λ1I) =

[
−2 1

4 −2

]

so that ζ1 = (1, 2)T is an eigenvector associated with eigenvalue λ1.
Similarly, ζ2 = (1,−2)T . The two inedepndent solutions are

x1(t) =

(
e3t

2e3t

)
, x2(t) =

(
e−t

−2e−t

)
.

A Fundamental Solution Matrix is

Ψ(t) =

[
e3t e−t

2e3t −2e−t

]
,

from which one finds

Ψ(0) =

[
1 1
2 −2

]
, Ψ(0)−1 =

[
1
2

1
4

1
2
−1

4

]
.

To find the solution of the initial value problem

ẋ = Ax , x(0) = x0 = (1, 0)T

note that

c = Ψ(0)−1x0 =

(
1
2
1
2

)
so that

x(t) = Ψ(t)c =

(
x1(t)
x2(t)

)
=

(
1
2
e3t + 1

2
e−t

e3t − e−t
)
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As a final note, it is possible that one of the eigenvalues is zero in
this case. Suppose λ1 = 0. Then, one solution is a constant (nontrivial)
solution

x1(t) = ζ1

where ζ1 is the eigenvector associated with the zero eigenvalue. In this
case, the eigenspaceEλ1(A) = E0(A) = N(A)! In other words,A is not
invertible since det(A − 0I) = 0. These constant solutions correspond
to the fixed points of ẋ = Ax which occur on the line spanned by ζ1.

8.2 Complex Conjugate Eigenvalues

Suppose thatA ∈ IR2×2 has complex eigenvalues. Such eigenvalues (be-
ing roots of a quadratic) must occur in complex conjugate pairs. Specif-
ically, suppose that one eigenvalue λ is

λ = a+ ib .

Then there is a complex eigenvector ζ ∈ IC2 such that

Aζ = λζ

The complex conjugate of any complex number z = a+ ib is defined as:

z̄ = a− ib

It can easily be verified that for any two complex numbers z1 and z2,

z1z2 = z̄1z̄2 .

For a vector ζ = (ζ1, ζ2)T , the conjugate ζ̄ is defined as:

ζ̄ =

(
ζ̄1

ζ̄2

)
.

A similar defintion holds for matrices A but in our case, A is real so that
Ā = A.

As a result, if (λ, ζ) is an eigenvalue-eigenvector pair for A, then the
calculations

Aζ = λζ

Āζ̄ = λ̄ζ̄

Aζ̄ = λ̄ζ̄
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show that (λ̄, ζ̄) is also an eigenvalue-eigenvector pair for A.
Even though the eigenvalues and eigenvectors are complex,

x(t) = eλtζ

is still a solution of ẋ = Ax. The solution, however, is not real. To
construct a Fundamental Solution Matrix, we need two linearly inde-
pendent real solutions. Toward this end, we define the notations Re(X)
and Im(X) to be the real and imaginary parts of X , respectively. Then,
x(t) = xr(t) + ixi(t) where xr = Re(x) and xi = Im(x). Substituting
this into the differential equation one finds:

ẋr + iẋi = Axr + iAxi.

Since the real and imaginary parts of each side of this equation must
match we see that real solutions can be extracted from the real and imag-
inary parts of x(t). By writing the complex eigenvector ζ associated with
λ = a+ ib as

ζ = ζr + iζi

where ζr = Re(ζ) and ζi = Im(ζi),

x(t) = e(a+ib)t(ζr + iζi)

x(t) = eat(cos(bt) + isin(bt))(ζr + iζi)

x(t) = xr(t) + ixi(t)

where

xr(t) = eat
(
cos(bt)~ζr − sin(bt)~ζi

)
(69)

xi(t) = eat
(
sin(bt)~ζr + cos(bt)~ζi

)
. (70)

Then, a Fundamental Solution Matrix can be formed by using xr(t) and
xi(t) as its columns:

Ψ(t) = [xr(t) | xi(t)]

Notice that if Re(λ) = a = 0, solutions remain bounded but x = 0 is
not attracting (neutral stability). If Re(λ) < 0,

x(t) = c1xr(t) + c2xi(t)→ 0 , as t→∞

demonstrating x = 0 is attracting (and asymptotically stable). IfRe(λ) >
0, then the fixed point x̄ = 0 is unstable since the solution grows without
bound.

61



Example 5 Let

ẋ = Ax =

[
1 −1
5 −3

](
x1

x2

)
The characteristic polynomial for A is

P (λ) = det(A− λI) = λ2 + 2λ+ 2

The roots of P are the eigenvalues. In this case λ = −1 + i is one
eigenvalue (the other is λ̄ = −1− i which we don’t need).

(A− λI) =

[
2− i −1

5 −2− i

]

so that ζ = (1, 2 − i)T is a complex eigenvector associated with the
eigenvalue λ. Here,

ζ = ζr + iζi =

(
1
2

)
+ i

(
0
−1

)

Using (69)-(70), one finds two independent (real) solutions:

xr(t) =

(
e−tcos t

e−t(2cos t+ sin t)

)
, xi(t) =

(
e−tsin t

e−t(2sin t− cos t)

)

A Fundamental Solution Matrix is

Ψ(t) =

[
e−tcos t e−tsin t

e−t(2cos t+ sin t) e−t(2sin t− cos t)

]
,

from which Φ(t) can be computed.

8.3 Real and Equal Eigenvalues

The last case to consider is when A ∈ IR2×2 has a single repeated eigen-
value. An simple example of such a matrix is:

A =

[
1 1
0 1

]

whose characteristic polynomial is P = (1− λ)2, i.e., λ = 1 is the sole
(repeated) eigenvalue.

If λ0 is a repeated eigenvalue of A ∈ IR2×2 and ζ0 is the associated
eigenvector then

x(t) = eλ0tζ0
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is still a solution. The problem is that we do not have another eigenvalue-
eigenvector pair from which to construct a second solution 14. To find a
second solution, assume that

y(t) = teλ0tη∗ + eλ0tη (71)

where η∗ and η are vectors to be determined. Straight forward calcula-
tions reveal

Ay − ẏ = teλ0t (Aη∗ − λ0η
∗) + eλ0t (Aη − λ0η − η∗) .

Thus, if we choose η∗ and η so that

(A− λ0I)η∗ = 0 (72)
(A− λ0I)η = η∗ (73)

then y(t) solves ẏ = Ay. Since λ0 is an eigenvalue ofA then (72) will be
satisfied by the choice η∗ = ζ0, the eigenvector. In summary, the second
solution y(t) is

y(t) = teλ0tζ0 + eλ0tη (74)

where η is a solution of

(A− λ0I)η = ζ0 . (75)

Then the Fundamental Solution Matrix is formed in the usual way:

Ψ(t) = [ x(t) |y(t) ] = [ eλ0tζ0 | teλ0tζ0 + eλ0tη ].

One key issue constructing Ψ(t) in such a way is the solvability of (75).
In particular, one cannot simply write η = (A − λ0I)−1ζ0 since λ0 was
chosen so that the inverse of (A − λ0I) did not exist! Nevertheless,
solution η of (75) may still exist 15. Below we illustrate the procedure in
an example.

Example 6 Let

ẋ = Ax =

[
1 −1
1 3

](
x1

x2

)
The characteristic polynomial for A is

P (λ) = det(A− λI) = (λ− 2)2

14except in the exceptional case where A is the zero matrix. Then, λ0 = 0 and (1, 0)T , (0, 1)T are two
independent eigenvectors.

15They won’t be unique since one can can always add an element of N(A− λ0I) to η and that will still
be a solution.
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Thus λ = λ0 = 2 is a repeated eigenvalue. Since

(A− 2I) =

[
−1 −1
1 1

]
,

ζ0 = (1,−1)T is an eigenvector associated with the eigenvalue λ0. Thus,

x(t) = e2tζ0 =

(
e2t

−e2t

)

is a solution. To find y(t) in (74) we need to find a solution η of (A −
2I)η = ζ0. If η = (η1, η2)T , this is the same as finding a solution of :[

−1 −1
1 1

](
η1

η2

)
=

(
1
−1

)

As an augmented matrix this system is:

[A− 2I|ζ0] =

[
−1 −1 1

1 1 −1

]

which after row reduction yields:[
−1 −1 1

0 0 0

]

As a scalar equation this is equivalent to:

−η1 − η2 = 1

so that if η1 = −1, we must have η2 = 0 or

η = (−1, 0)T .

Then, y(t) is known:

y(t) =

(
(t− 1)e2t

−te2t

)

Then, a Fundamental Matrix Solution is

Ψ(t) = [ x(t) |y(t) ] =

[
e2t (t− 1)e2t

−e2t −te2t

]

Notice how the growth of y(t) is faster than the growth of x(t) since the
exponential is multiplied by t.
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8.4 Basic Linear Subspaces for Fixed Points

For the planar system

ẋ = Ax , A ∈ IR2×2

the solution x(t) and fixed point stability properties can all be determined
from the eigenvalues and eigenvectors of A. If

A =

[
a11 a12

a21 a22

]

the characteristic polynomial

P (λ) = det(A− λI) = λ2 − (a11 + a22)λ+ (a11a22 − a12a21)

Written another way,

P (λ) = λ2 − Tr(A)λ+ det(A)

where Tr(A) = a11 +a22 is the trace of the matrix A. Thus, the stability
of the fixed point x̄ is determined entirely by the two quantities Tr(A)
and det(A). Roots of P (λ) are:

λ± =
1

2

(
Tr(A)±

√
(Tr(A))2 − 4det(A)

)
By considering all the possible permutations of signs of Tr(A) and
(Tr(A))2 − det(A) one can easily deduce the following table for the
stability of x̄ = 0.

Associated with x̄ = 0 we also define three linear manifolds:

Definition 22 For A ∈ IR2×2, let

Aξk = λkξk , ξk = xk + iyk , k = 1, 2

where xk and yk are the real and imaginary parts of the eigenvectors ξk
when they are complex. Then,

Es(0) ≡ span{xk, yk : Re(λk) < 0}
Ec(0) ≡ span{xk, yk : Re(λk) = 0}
Eu(0) ≡ span{xk, yk : Re(λk) > 0}

Here Es(0), Ec(0) and Eu(0) are the linear stable, center and unstable
manifolds associated with x̄ = 0.
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det(A) < 0 x̄ = 0 is a saddle

0 < det(A) ≤ 1
4
(TrA)2, TrA < 0 x̄ = 0 is a stable node

det(A) > 1
4
(TrA)2, TrA < 0 x̄ = 0 is a stable spiral

det(A) > 0, T rA = 0 x̄ = 0 is a center

det(A) > 1
4
(TrA)2, TrA > 0 x̄ = 0 is an unstable spiral

0 < det(A) ≤ 1
4
(TrA)2, TrA > 0 x̄ = 0 is an unstable node

det(A) = 0 x̄ ∈ N(A) are all fixed points
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9 Planar Systems: Linearization

In this section we define the linearization of the planar system

ẋ1 = f1(x1, x2) (76)
ẋ2 = f2(x1, x2) (77)

about a fixed point. Recall this system can be written

ẋ = f(x)

where

x(t) =

(
x1(t)
x2(t)

)
, f(x) =

(
f1(x1, x2)
f2(x1, x2)

)
.

For any smooth x(t), ẋ(t) is a vector tangent to the curve parameterized
by x(t) = (x1(t), x2(t)). Thus, if x(t) is any solution of ẋ = f(x(t)),
it must be tangent to the vector field defined by f . This means that the
vector field alone f(x) determines the “flow” of solutions in the plane.

If f is sufficiently smooth (i.e., if each component is continuously
differentiable) then solutions exist for a finite time and are unique. One
immediate consequence is that trajectories cannot cross in the (x1, x2)
phase plane. The reason for this is that such a crossing would contradict
the uniqueness of solutions. For example, if two different trajectories
crossed at x0 ∈ IR2 then there would be two different solutions to ẋ =
f(x), x(0) = x0!

Also note that if “blowup” occurs it cannot be observed in a phase
portrait. Blowup means that ‖ x(t) ‖→ ∞ as t → T− where T is some
finite time. If there were blowup it could not be drawn in the (x1, x2)
plane since either or both of x1, x2 is approaching infinity. Also, just
from looking at a trajectory drawn in the (x1, x2) plane there is no way
to determine how fast x(t) is moving. This could be ascertained from the
vector field f since ‖ f(x) ‖ is the speed of the solution x(t). Even so,
that information alone would not be enough to determine if the approach
of a trajectory to∞ occurs in finite time.

Definition 23 For the system (76)-(77), we define the x1-nullcline (or
ẋ1-nullcline) as the set of (x1, x2) such that f1(x1, x2) = 0. A similar
definition holds for x2-nullcline. The set (x1, x2) such that f1(x1, x2) =
k will be referred to as the ẋ1 = k isocline of x1.
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Note that on the x1-nullcline,

f =

(
0
f2

)
,

so that trajectories flow upward or downward. On x2-nullclines, the
“flow” is horizontal.

Fixed points of ẋ = f(x) occur where nullclines intersect since a
fixed point x̄ = (x̄1, x̄2) satifies the coupled equations

f1(x̄1, x̄2) = 0

f2(x̄1, x̄2) = 0

The word “flow” has a well defined meaning in the context of ordinary
differential equations.

Definition 24 The flow φ(t, x0) generated by the differential equation
ẋ = f(x), (x(t) ∈ IRn) is that function φ : IR × IRn → IRn which
solves the initial value problem

ẋ = f(x) , x(0) = x0.

Specifically,
∂φ

∂t
= f(φ(t, x0))

and
φ(0, x0) = x0.

Example 7 For the linear planar system ẋ = Ax the flow φ can be found
explicitly using the Fundamental Solution Matrix Φ(t) as follows:

φ(t, x0) = Φ(t)x0.

In particular, this defines a map from IR× IRn to IRn.

The flow φ generated by a differential equation has two other noteable
properties. These are 16

a) φ(t+ s, x0) = φ(t, φ(s, x0))

b) For each fixed t the map φ(t, ·) is invertible with inverse φ(−t, ·).
That is, φ(−t, φ(t, x0)) = x0.

16whenever the expressions are defined
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9.1 Higher Order Taylor Series: Jacobians, Hessians

If a function f : IR2 → IR is sufficiently smooth near some point (x̄, ȳ)
then it has an m-th order Taylor series expansion which converges to
the function as m → ∞. Expressions for m-th order expansions are
complicated to write down. For our purposes we will only need second
order expansions so we state a related Theorem here:

Theorem 12 Let f : IR → IR and assume that f and all its derivatives
up to second-order are continous on some neighbourhood Nr(a), a =
(a1, a2). For each x = (x1, x2) ∈ Nr(a) there exists a ζ (which depends
on x) on the line connecting a and x such that

f(x) = f(a) + fx1(a)(x1 − a1) + fx2(a)(x2 − a2)

+
1

2!

(
fx1x1(a)(ζ1 − a1)2 + 2fx1x2(a)(ζ1 − a1)(ζ2 − a2) + fx2x2(a)(ζ2 − a2)2

)
Notationally there are many ways to write out Taylor series. For f =

f(x1, x2) one can define the gradient of f as

∇f(x) =

(
∂f

∂x1

,
∂f

∂x2

)
The Hessian Hf (x) of f is defined as

Hf (x) =

 ∂2f
∂x21

∂2f
∂x1x2

∂2f
∂x2x1

∂2f
∂x22


Note that Hf is a symmetric matrix.

With these definitions, the expansion in the Theorem above can be
written

f(x) = f(a) +∇f(a) · (x− a) +
1

2!
(ζ − a)THf (a)(ζ − a)

where · is the dot product.
Here, the linear approximation 17of f is

f(x) ' f(a) +∇f(a) · (x− a)

and the remainder term isR2(ζ) = 1
2!

(ζ−a)THf (a)(ζ−a). The second-
order Taylor series of f about a is

f(x) = f(a) +∇f(a) · (x− a) +
1

2!
(x− a)THf (a)(x− a) +R3

17or first-order Taylor series approximation
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where the exact form of the remainder term R3 is a complicated expres-
sion. Here we will simply write:

R3 = O(‖ x− a ‖3) .

Example 8 Let f(x) = x2
1 + ex1 − x1x2 + 3x2 and a = (0, 0). Then,

∇f(x) = (2x1 + ex1 − x2,−x1 + 3)

so that
∇f(x) = (1, 3)

The Hessian is

Hf (x) =

[
2 + ex1 −1
−1 0

]
so that

Hf (a) =

[
3 −1
−1 0

]
Since f(a) = 1,

f(x) = 1 + (1, 3) · x+
1

2!
xT
[

3 −1
−1 0

]
x+O(‖ x ‖3)

Longhand,

f(x) = 1 + x1 + 3x2 +
3

2
x2

1 − x1x2 +O(‖ x ‖3)

Expansions for a vector valued function f : IR2 → IR2 are obtained
by expanding each component separately. Thus, if f = (f1, f2),

f(x) =

(
f1(a)
f2(a)

)
+

(
∂f1
∂x1

(a)(x1 − a1) + ∂f1
∂x2

(a)(x2 − a2)
∂f2
∂x1

(a)(x1 − a1) + ∂f2
∂x2

(a)(x2 − a2)

)
+ · · ·

By defining the Jacobian Df(x) of f at x as the matrix:

Df(x) =

[
∂f1
∂x1

(x) ∂f1
∂x2

(x)
∂f2
∂x1

(x) ∂f2
∂x2

(x)

]

then the Taylor series above can be written

f(x) = f(a) +Df(a)(x− a) + · · ·
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The second order expansion of f can be written

f(x) = f(a) +Df(a)(x− a) +
1

2!
(x− a)THf (a)(x− a) +O(‖ x ‖3)

where the term involving the Hessian must be interpretted 18

(x− a)THf (a)(x− a) =

(
(x− a)THf1(a)(x− a)
(x− a)THf2(a)(x− a)

)

9.2 Linearization Process

Suppose that
ẋ = f(x)

has a fixed point x̄ = (x1, x2). Near x̄, we expect that a reasonable
approximation of x(t) can be obtained using a first order Taylor series
of f about x̄. Toward this end, let

x(t) = x̄+ ηu(t)

where the parameter η � 1 has been introduced to emphasize that the
difference ‖ x(t) − x̄ ‖ is small, i.e., ‖ x(t) − x̄ ‖= O(η). Since x̄ is
constant, ẋ = ηu̇ so that

ηu̇ = f(x̄+ ηu) .

So far this equation is an exact expression for u(t). Now we expand the
right side in a Taylor series about x̄ as follows:

ηu̇ = f(x̄) + ηDf(x̄)u+
1

2!
η2uTHf (x̄)u+ · · ·

= ηDf(x̄)u+
1

2!
η2uTHf (x̄)u+ · · ·

where the last step is due to the fact that f(x̄) = 0. Cancelling η yields:

u̇ = Df(x̄)u+
1

2!
ηuTHf (x̄)u+ · · ·

Were the exact remainder term included, this equation for u(t) would
also be exact. Now we define the linearization of ẋ = f(x) about the
fixed point to be the system:

v̇ = Df(x̄)v (78)
18When f is vector valued, Hf is a tensor - not a matrix
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This equation is also referred to as the linear variational equation of
ẋ = f(x) about x̄. We have deliberately used v(t) instead of u(t) to
emphasize that u and v may not be exactly equal.

A natural question to ask is to what extent does the linearization (78)
predict the qualitative and/or quantitative behavior of the true variation
u(t) (and hence x(t))? There are many theorems which address this
question and give very precise answers. For our purposes we need only
know that the approximation is very good for most fixed points. Which
ones?

Definition 25 A fixed point x̄ of ẋ = f(x), x ∈ IRn is hyperbolic if all
the eigenvalues of Df(x̄) have nonzero real parts. If x̄ is not hyperbolic,
it is said to be nonhyperbolic.

Note that centers are nonhyperbolic but that nodes, spirals and sad-
dles are all hyperbolic. Also, linear systems ẋ = Ax where N(A) is
nontrivial have a line of nonhyperbolic fixed points.

Now we can state that if x̄ is hyperbolic the linearization (78) well
approximates the quantitative and qualitative behavior. Again, there are
many separate theorems which address these issues in a precise manner
19. In particular, for every ε < 1 there exists a δ > 0 and a T > 0 such
that x0 ∈ Nδ(x̄) implies

‖ φ(t, x0)− v(t) ‖< ε , ∀t ∈ (−T, T )

where v(t) is the solution of the initial value problem

v̇ = Df(x̄) , v(0) = x0 − x̄ .

This is more a statement of the quantitative closeness of solutions. Es-
sentially if your initial condition x0 is close to a hyperbolic fixed point
x̄ then the true solution x(t) will be close to x̄ + v(t) - at least for
t ∈ (−T, T ).

Earlier we defined the concept of “topological equivalence” for dy-
namics on IR. An analagous definition holds for dynamics on IRn. Given
such a definition, the goal of theorems relating qualitatively similarities
between the true solution x(t) and the variation v(t) determined by the
linearized problem revolve around showing a “near” topological equiv-
alence. Essentially, what one does there is to show that the vector fields
f(x) and Df(x̄)v are nearly the same everywhere near the fixed point.
Here we do not delve into the subtle issues surrounding such theorems.

19a noteable one being the stable manifold theorem
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Instead, we will use our fixed point classifcation scheme for linear
systems to classify critical points of the nonlinear problems. Here we
summarize the classification of fixed point of ẋ = Ax making the iden-
tification A = Df(x̄) and acknowledge the possibility that when x̄ is
nonhyperbolic the behavior near x̄ may not be determined by the lin-
earization and that in such an event, higher order terms in the Taylor
series approximation may become relevant.

det(A) < 0 x̄ is locally a saddle

0 < det(A) ≤ 1
4
(TrA)2, TrA < 0 x̄ is locally a stable node

det(A) > 1
4
(TrA)2, TrA < 0 x̄ is locally a stable spiral

det(A) > 0, T rA = 0 x̄ is locally a center

det(A) > 1
4
(TrA)2, TrA > 0 x̄ is locally an unstable spiral

0 < det(A) ≤ 1
4
(TrA)2, TrA > 0 x̄ is locally an unstable node

det(A) = 0 x̄ is degenerate

73



10 Topological Equivalence and failures

Here we make some definitions to more accurately define how the flow
of nonlinear systems near fixed points are “equivalent” to their lineariza-
tions and give an example of failure of equivalence.

Definition 26 A homeomorphism is a continuous map H : X → Y with
continuous inverse. In this case we say thatH is a homeomorphism from
X into Y . When X = IRn and Y = IRn, a homeomorphism H which is
continuously differentiable is a diffeomorphism.

Given this definition we can now precisely define “equivalent” flows.
Roughly speaking, if there is an invertible transformation which maps
the flow from one system onto the other then the flows are “topologically
equivalent”. The exact definition below for topological equivalence can
easily be generalized to flows on IRn.

Definition 27 Let the flows of the systems

ẋ = f(x) , x(0) = x0 , x(t) ∈ IR2 (79)
ẏ = g(y) , y(0) = y0 , y(t) ∈ IR2 (80)

be φ(t, x0) and ψ(t, x0), respectively. Let φ(t, x0) be defined for x0 ∈
U ⊂ IR2. We say that the systems (79)-(80) (or flows generated by) are
topologically equivalent on U if there exists a homeomorphism H from
U into V = H(U) and a (time) interval I such that

H(φ(t, x0)) = ψ(t,H(x0)) , ∀x0 ∈ U , ∀t ∈ I

and that flow direction is preserved.

The definition states that when systems are topologically equivalent
trajectories in x-phase space can be used to compute trajectories in y-
phase space via H (and vice versa). Moreover, all of the qualitative
aspects of such trajectories must be retained. The statement “flow direc-
tion is preserved” imples that if x̄ is an attracting fixed point in x phase
space then ȳ = H(x̄) must be attracting in y phase space. The interval
I is introduced since flows may be topologically equivalent only for a
finite time interval. Outside this interval the flows may be qualitatively
very different. The set U is introduced since flows may be topologically
equivalent only in a neighbourhood U (or local to) of some fixed point
x̄.
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Example 9 Let ẋ = Ax where x(t) ∈ IR2 and define the transformation

y = Hx , H =

[
cos α −sin α
sin α cos α

]

H is a homeomorphism 20 from IR2 into IR2 which represents a counter-
clockwise rotation (by angle α) of the flow φ(t, x0) generated by ẋ = Ax

In particular det(H) = 1 implies the transformation is invertible.
Since

ẏ = Hẋ

the associated differential equation for y(t) is

ẏ = HAH−1y

and the flow ψ(t, y0) generated is topologically equivalent to φ.
To see why H represents a rotation, let

x = (x1, x2)T = (r cos θ, r sin θ)T

where (r, θ) is polar coordinates. Here, both r and θ are functions of
time t.

Given the definition of H ,

y = Hx =

[
cos α −sin α
sin α cos α

] (
r cosθ
r sinθ

)
=

(
r cos(θ + α)
r sin(θ + α)

)
.

The last step is accomplished by using trigonometric addition angle for-
mulae after multiplying out the expressionHx. Notice that y = (y1, y2)T

above is the vector x rotated a angle α counterclockwise.

Example 10 A (nonlinear) transformation y = H(x) can be defined by

y1 = H1(x1, x2) = x2 − ex1

y2 = H2(x1, x2) = x2

To see why this transformation is invertible, notice that the first equation
can be written

x2 = y1 + ex1

20We haven’t proven H is continuous which is something we will not worry about in this course. We will
focus solely on the invertibility of transformations. It is a fact, however, that if a transformation H is linear
defined by the matrix multiplication y = H(x) = Ax, then H is continuous. Such transformations are
invertible if the inverse of A exists, i.e., det(A) 6= 0.
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For fixed y = (y1, y2) this curve in the (x1, x2) plane intersects the x2 =
y2 line at exactly one point. To find the inverse x = H−1(y), notice that
H2 −H1 = ex1 so that the inverse is defined by:

x1 = log(y2 − y1)

x2 = y2

Notice that the transformation is only defined for y with y2 − y1 > 0. In
effect, H maps IR2 into the portion of IR2 with y2 − y1 > 0.

The homeomorphism H can be used to create a topologically equiv-
alent system. For example, if

ẋ = f(x)

then the chain rule for y = H(x) is

ẏ = DH(x)ẋ

where DH(x) is the Jacobian of H , i.e.,

DH(x) =

[
∂H1

∂x1
∂H1

∂x2
∂H2

∂x1
∂H2

∂x2

]
=

[
−ex1 1

0 1

]

Given ẋ = f(x),
ẏ = DH(x)f(x)

and since x = H−1(y),

ẏ = g(y) ≡ DH(H−1(y))f(H−1(y)) (81)

For the specific transformation H ,

DH(H−1(y)) =

[
−elog(y2−y1) 1

0 1

]
=

[
y1 − y2 1

0 1

]

To illustrate this procedure consider the system

ẋ = f(x) =

(
x2

−x1

)
(82)

where x = (x1, x2)T . Using the inverse transformation H−1(y) in (81)
one finds

ẏ =

[
y1 − y2 1

0 1

](
y2

−log(y2 − y1)

)
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Figure 4: Figure shows some trajectories for (83)

Expanding this out

ẏ = g(y) =

(
g1(y1, y2)
g2(y1, y2)

)
=

(
y2(y1 − y2)− log(y2 − y1)

−log(y2 − y1)

)
(83)

Since H is a homeomorphism, the systems (82) and (83) are topologi-
cally equivalent.

It is easy to verify that x̄ = (0, 0) is a center for (82) and that all
trajectories lie on circles, i.e.,

d

dt

(
x2

1 + x2
2

)
= 2x1ẋ1 + 2x2ẋ2 = 0

so that x1(t)2 + x2(t)2 is constant.
The fixed point x̄ in the x phase plane is mapped to ȳ = H(x̄) =

(−1, 0)T , It can be verified that ȳ is also a center for (83) but trajecto-
ries are no longer closed circles. They are, however, closed orbits and
periodic like those of (82). This fact would not have been immediately
obvious from (83) alone. Two (closed) trajectories of (83) are shown
above with the y-nullcines superimposed.

A precise statement relating the equivalence of the nonlinear flow of
ẋ = f(x) near a hyperbolic fixed point x̄ is given in the theorem below.

Theorem 13 Hartman-Grobman Theorem: Let f : IRn → IRn be
a continuously differentiable function on some open set E ⊂ IRn. Let
φ(t, x0) be the flow for

ẋ = f(x) , x(0) = x0 ∈ E (84)
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and suppose that x̄ ∈ E is a hyperbolic fixed point of (84). The lin-
earization of (84) about x̄ is

ẏ = Df(x̄)y , y(0) = y0

with associated flow ψ(t, y0) = Φ(t)y0, where Φ(t) is the Fundamental
Solution Matrix with Φ(0) = I , the identity.

Then, there exists a homeomorphism H of an open set (neighbour-
hood) U containing x̄ onto an open set V containing ȳ = H(x̄) and a
(time) interval I such that

H(φ(t, x0)) = ψ(t,H(x0)) , ∀x0 ∈ U , ∀t ∈ I.

Moreover, H can be chosen so that parametrization is preserved.

The proof of this Theorem is long and yucky (technical term). The
point is that near a hyperbolic fixed point the nonlinear (planar) system
is approximated accurately by the associated linear system

ẏ = Df(x̄)y , y ∈ IR2

If the linear system has a saddle, node or spiral (stable or unstable) then
the flow of the nonlinear system is qualitatively the same near x̄. Of
course, further away from the fixed point solutions ẋ = f(x) may be-
have very differently. The theorem does NOT apply if x̄ is a center or
det(Df(x̄)) = 0 (the degenerate case with a line of fixed points). In
both of these cases a higher-order Taylor series approximation near x̄ is
required to approximate the flow ( a case we will not examine). Instead,
we will illustrate by way of example what can wrong when x̄ is a center
(nonhyperbolic). First, we illustrate how to convert planar systems to
polar coordinates.

10.1 Conversion to Polar Coordinates

Here we illustrate how to convert a system

ẋ = f1(x, y) (85)
ẏ = f2(x, y) (86)

into one in polar coorinates:

x = r cos θ , y = r sin θ .
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Again, since (x, y) depend on time t, so do r and θ. Differentiating these
expressions above we find:

ẋ = cos θ ṙ − r sin θ θ̇ = f1(x, y)

ẏ = sin θ ṙ + r cos θ θ̇ = f2(x, y)

which can be written in the matrix form:[
cos θ −r sin θ
sin θ r cos θ

](
ṙ

θ̇

)
=

(
f1(r cos θ, r sin θ)
f2(r cos θ, r sin θ)

)

where the matrix

R =

[
cos θ −r sin θ
sin θ r cos θ

]
has the inverse

R−1 =

[
cos θ sin θ
− sin θ
r

cos θ
r

]
.

Thus, (
ṙ

θ̇

)
=

[
cos θ sin θ
− sin θ
r

cos θ
r

](
f1(r cos θ, r sin θ)
f2(r cos θ, r sin θ)

)
Multiplied out this is:

ṙ = cos θ f1 + sin θ f2 (87)

θ̇ = −sin θ f1

r
+

cos θ f2

r
(88)

10.2 Local Dynamics near Centers- Counterexample

Here we present an example which shows that some nonlinear systems
whose linearized system has a center may in fact have qualitatively dif-
ferent flow near its fixed point. Consider the system

ẋ = f1(x, y) = −y + xF (x2 + y2) (89)
ẏ = f2(x, y) = x+ yF (x2 + y2) (90)

where F is some scalar function. For example, if F (z) = sin(z) then
the system above would be

ẋ = f1(x, y) = −y + x sin(x2 + y2)

ẏ = f2(x, y) = x+ y sin(x2 + y2)
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If we apply the conversion to polar-coordinates in the previous subsec-
tion the system (89)-(90) has the very simple (decoupled) form:

ṙ = rF (r2)

θ̇ = 1

where r2 = x2 + y2. So long as F (0) = 0, it is easy to show that the
Jacobian of (89)-(90) near the fixed point x̄ = (0, 0)T is

Df(x̄) =

[
0 −1
1 0

]
so that the linearization of (89)-(90) has purely imaginary eigenvalues
and a center at the origin.

We now show that for some F , solutions actually spiral away from
the origin! Choosing F (z) = z(1− z) the system is

ẋ = f1(x, y) = −y + x(x2 + y2)(1− x2 − y2)

ẏ = f2(x, y) = x+ y(x2 + y2)(1− x2 − y2)

which in polar coordinates is

ṙ = r3(1− r2) = G(r)

θ̇ = 1

Notice that G(r) > 0 for r ∈ (0, 1). This means that if the initial con-
ditions (x0, y0) are chosen so that the initial distance from the origin
r0 =

√
x2

0 + y2
0 is in (0, 1), the trajectory (x(t), y(t)) will move away

from the origin! This is NOT the same qualitative behavior of a center.
The linearized system predicts that near the origin the system should os-
cillate when it fact steadily moves away from the origin until r(t)→ 1−.
The phase portrait of the flow with its nullclines is shown in the next
figure.
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