
Hopf Bifurcations - Summary

Consider the planar system

dx

dt
= f(x, y;µ) , (1)

dy

dt
= g(x, y;µ) , (2)

where µ is a parameter. Alternately, we have the notations:

dx

dt
= f(x) =

d

dt

(
x
y

)
=

(
f(x, y)
g(x, y)

)
Further, let x̄(µ) = (x̄(µ), ȳ(µ)) be the equilibria. The Jacobian of the vector
field f(x) at x̄ is

Df(x̄) =

[
fx(x̄, ȳ) fy(x̄, ȳ)
gx(x̄, ȳ) gy(x̄, ȳ)

]
The eigenvalues of Df(x̄) are functions of the parameter µ. In terms of the
trace TrDf and determinant detDf , the eigenvalues of the Jacobian are:

λ±(µ) =
TrDf ±

√
(TrDf)

2 − 4detDf

2

In this summary we consider the special case where at some parameter value
µ = µ0

TrDf(x̄(µ0)) = 0 (3)

detDf(x̄(µ0)) > 0 (4)

When these two conditions are satisfied, the eigenvalues of the Jacobian are
purely imaginary. If, in addition to (3)-(4) being satisfied, the transversality condition

d

dµ
{IRe (λ+(µ))} |µ=µ0

6= 0 (5)

is satisfied, then a Hopf bifurcation occurs at the bifurcation point (x̄(µ0)), µ0)
(here, IRe(z) is the real part of z). At such a Hopf bifurcation for some µ
near µ0, small amplitude oscillations (limit cycles) exist. The amplitude of
these oscillations approaches zero as µ approaches µ0. Though Hopf theory
guarantees the existence of such periodic orbits for µ ' µ0, it does not guarantee
the existence of the oscillations for µ further away from µ0. Often, however, the
periodic orbits persist and grow in amplitude as |µ− µ0| increases.

At µ = µ0 the linearized system (linearization of (1)-(2) about x̄)

dz

dt
= Df(x̄)z. , z = (z1, z2) ∈ IR2 (6)
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has a center at z = 0. Therefore, solutions z(t) have the form

z(t) = c1~ζ1 cosωt+ c2~ζ2 sinωt

for some real constants ck and constant vectors ζk, k = 1, 2. Given the assumed
conditions (3)-(4), λ± = ±ωi where i2 = −1 and

ω =
√
detDf (7)

By Hopf theory, if (3)-(5), are satisfied then for every µ with |µ−µ0| sufficiently
small, there exists a T -periodic orbit (limit cycle) xp(t;µ) which satisfy (1)-(2).
The period T = T (µ) and Hopf theory also guarantees

lim
|µ−µ0|→0

T (µ) =
2π

ω
(8)

In other words, for µ very nearly equal µ0, the period of the (emergent) periodic
orbits of (1)-(2) nearly equals the period of the concentric periodic orbits of the
linearized system (6).

If the Jacobian has the very special form:

Df(x̄0) =

[
µ −ω
ω µ

]
, x̄0 = x̄(µ0)

then a third-order Taylor Series expansion of (1)-(2) about x̄ yields a system of
the form:

dz1
dt

= (dµ+ a(z21 + z22))z1 − (ω + cµ+ b(z21 + z22))z2 (9)

dz1
dt

= (ω + cµ+ b(z21 + z22))z1 + (dµ+ a(z21 + z22))z2 (10)

which when expressed in polar coordinates is

dr

dt
= (dµ+ ar2)r (11)

dθ

dt
= (ω + cµ+ br2) (12)

for constants a, b, c, d, ω, z1 = r cos θ, z2 = r sin θ. Note the equation for r(t) is
not coupled to the equation for θ. Furthermore, depending on the signs of the
constants a and d, this third-order system possesses periodic orbits along the
locus

µ = −ar2/d d 6= 0

It can be shown that

d =
d

dµ
{IRe (λ+(µ))} |µ=µ0

so that the existence of periodic orbits local to the bifurcation point depends
on d 6= 0. This is just the transversality condition (5).
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The constant a has a very complicated dependence on the vector field defining
the system. In Nonlinear Oscillations, Dynamical Systems and Bifurcations of
Vector Fields, J. Guggenheimer, P. Holmes (1983) the stated value is:

a =
1

16
[fxxx + fxyy + gxxy + gyyy] +

1

16ω
[fxy(fxx + fyy)]

− 1

16ω
[gxy(gxx + gyy) + fxxgxx − fyygyy]

evaluated at the Hopf point (x∗, y∗, µ∗). Collectively, the signs of a and d
determine whether the Hopf bifurcation is Supercritical (stable periodics) or
Subcritical (unstable periodics). Recall the locus of periodic orbit (leading-
order) radii is given by

µ = −ar2/d d 6= 0

For this reason the branch of periodic orbits are sometimes said to have a
quadratic tangency to the fixed points.
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