Hopf Bifurcations - Summary

Consider the planar system

CC% = flz,y;m) (1)
% = glx,yspm) (2)

where p is a parameter. Alternately, we have the notations:

dx d (= f(@,y)
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Further, let x(p) = (Z(w), ¥(pe)) be the equilibria. The Jacobian of the vector
field f(x) at X is

92(%, ) 9y4(7,7)

The eigenvalues of Df(X) are functions of the parameter u. In terms of the
trace TrDf and determinant detDf, the eigenvalues of the Jacobian are:

TrDE + \/(TrDf)? - 4detDE
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In this summary we consider the special case where at some parameter value
K= Ho
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When these two conditions are satisfied, the eigenvalues of the Jacobian are
purely imaginary. If, in addition to (3)-(4) being satisfied, the transversality condition
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is satisfied, then a Hopf bifurcation occurs at the bifurcation point (X(uo)), io)
(here, IRe(z) is the real part of z). At such a Hopf bifurcation for some p
near po, small amplitude oscillations (limit cycles) exist. The amplitude of
these oscillations approaches zero as p approaches pg. Though Hopf theory
guarantees the existence of such periodic orbits for p ~ pg, it does not guarantee
the existence of the oscillations for p further away from pg. Often, however, the
periodic orbits persist and grow in amplitude as |p — po| increases.
At 1 = po the linearized system (linearization of (1)-(2) about X)
dz

i Df(X)z. , z=(z1,2)c R? (6)



has a center at z = 0. Therefore, solutions z(t) have the form
2(t) = 16y coswt + c3Co sinwt

for some real constants c; and constant vectors (i, k = 1,2. Given the assumed
conditions (3)-(4), Ay = +wi where i? = —1 and

w = VdetDf (7)

By Hopf theory, if (3)-(5), are satisfied then for every p with | — | sufficiently
small, there exists a T-periodic orbit (limit cycle) x,(¢; 1) which satisfy (1)-(2).
The period T' = T'(u) and Hopf theory also guarantees

27
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o (n) = — (8)
In other words, for u very nearly equal g, the period of the (emergent) periodic
orbits of (1)-(2) nearly equals the period of the concentric periodic orbits of the
linearized system (6).

If the Jacobian has the very special form:
Df(%o) = [ Z ;w } , Xo = X(po)

then a third-order Taylor Series expansion of (1)-(2) about X yields a system of
the form:

% = (du+a(2? 4 23))z1 — (W +cu+b(23 + 23)) 2z (9)
% = (wHep+b(z2+23))z + (du+a(z] +23))2 (10)
which when expressed in polar coordinates is
% = (du+ar®)r (11)
% = (w+ep+br?) (12)

for constants a, b, ¢, d,w, z1 = rcosf, zo = rsinf. Note the equation for r(¢) is
not coupled to the equation for . Furthermore, depending on the signs of the
constants a and d, this third-order system possesses periodic orbits along the
locus
p=—ar*/d d#0
It can be shown that p
d= o {IRe (A (1))} =puo

so that the existence of periodic orbits local to the bifurcation point depends
on d # 0. This is just the transversality condition (5).



The constant a has a very complicated dependence on the vector field defining
the system. In Nonlinear Oscillations, Dynamical Systems and Bifurcations of
Vector Fields, J. Guggenheimer, P. Holmes (1983) the stated value is:
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E [fa:xz + fzyy + Gzzy + gyyy] + @ [fzy(fzx + fyy)]
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- m [gxy(gzz + gyy) + foxGzz — fyygyy]
evaluated at the Hopf point (a*,y*,u*). Collectively, the signs of a and d
determine whether the Hopf bifurcation is Supercritical (stable periodics) or
Subcritical (unstable periodics). Recall the locus of periodic orbit (leading-
order) radii is given by
p=—ar?/d d#0

For this reason the branch of periodic orbits are sometimes said to have a
quadratic tangency to the fixed points.




